
Al./V Rj9( ~({y9AD'-A274 603

A AUTOMATED INFORMATION MANAGEMENT F'OR
DESIGNERS:

Functional.1 Reqiifiirenlnts for' Compu~ter Based AssociateN
That Support Access and Use of Technical Information in IDcsign

1 William J. Cody
R William B. Rouse

0 ~~~SEARCH TECHNOLOGY i m'N 4898 S. OLD PEACHTREE ROAD ) 'IC
G NORCROSS, GA 3007 1-4707 l E CT

JAN 0 41994
Kenneth R. Boff E

L CREW SYSTEMS DIRECTORAIth,
A HUMAN ENGINEERING DIV1SIM*

B WRIGHT-PAIT1ERSON AFB, 01410 45433-7022

0
A 93-31292

R FINAL RE~oirT FOR TIlIE PERIOD SEPTEMBER 1986 TO MARCh 1992

Y

Approved for public release; distribution is unlimited

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573



NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Armstrong Aerospace Medical Research
Laboratory. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AL/CF-TR-1993-0069

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

KENNETH R. BOFF, Chief
Human Engineering Division
Armstrong Laboratory



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources.
gatherq a•nd maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services. Directorate ?or information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
IMarch 1993 Final Sept 1986 to Mar 1992

4. TITLE AND SUBTITLE AUTOMATED INFORMATION MANAGEMENT FOR 5. FUNDING NUMBERS

DESIGNERS: Functional Requirements for Computer Based PE: 62202F
Associates That Support Access and Use of Technical PR: 7184
Informat on-in De12n TA: 718426

6. AUTHOR(S) WU: 71842607
William J. Cody C: F33615-86-C-0542
William B. Rouse
Kenneth R. Boff

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION

Search Technology REPORT NUMBER

4898 S. Old Peachtree Road
Norcross, GA 30071-4707

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Armstrong Laboratory, Crew Systems Directorate AGENCY REPORT NUMBER

Human Engineering Division
HQ HSC, AFMC AL/CF-TR-1993-0069

Wright-Patterson AFB OH 45433-7022

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is
unlimited

13. ABSTRACT (Maximum 200 words)
The purpose of this program was to analyze the process of complex system design
to determine why designers often fail to consider potentially valuable technical
information in making design decisions. Based on this analysis, the goal was to
define functional requirements for a new class of supports that will enhance
designers' access and use of such information. Termed Designer's Associates,
these supports derive from a thorough understanding of designer's tasks and
the services that intelligent computing technologies make possible.

14. SUBJECT TERMS 15. NUMBER OF PAGES

127
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std 139-18
298-102



THIS PAGE INTENTIONALLY LEFT BLANK

ii



SUMMARY

The purpose of this program was to analyze the process of complex system design to
determine why designers often fail to consider potentially valuable technical information in making
design decisions. Based on this analysis, the goal was to define functional requirements for a new
class of supports that will enhance designers' access and use of such information. Termed
Designer's Associates, these supports derive from a thorough understanding of designers' tasks
and the services that intelligent computing technologies make possible.

Relevant design information exists in a variety of places, expressed in many forms, of
varying quality, etc. It includes both system-specific and system-independent elements.
Information also tends to be distributed across "data islands," making availability a problem. The
designer may not be aware of, misinterpret, or not value relevant information that could improve
his decisions. For better or worse, each designer assesses the costs and benefits associated with
information access, and acts in accord with this evaluation. A poor evaluation can effectively
block information from affecting design choices. The surrounding milieu, which is composed of
co-workers, organizations and technology, can interfere with access and use in a variety of direct
and subtle ways.

One approach for improving information access and utilization is through use of a new
concept in intelligent computer-based supports called "mixed-initiative support systems." In
these systems, decision-making authority and task performance can be delegated to machine
intelligence to augment human performance. Based on successful application of mixed-initiative
systems in the aviation and process control domains, we examine the prospects for applying this
technology to information access and use in design. We consider technological needs, system
architecture, and how such a support system might be evaluated. The report ends with a future
scenario of what design might be like with the support of a mixed-initiative Designer's Associate.

Acceslon For

NTIS CRA&I
DTIC QUALi•Y InM ? D 5 DTIC TAB

Unannounced Li
Justification ...

By
Distribution I

Availability Codes

Avail and I or
Dist Special

iii



PREFACE

This report documents work performed by Search Technology for the Armstrong
Laboratory under contract F33615-86-C-0542. Kenneth R. Boff served as the Air Force
technical director and program manager. William J. Cody served as program manager for Search
Technology.

The effort involved our examining the processes by which complex systems evolve, with
most examples taken from military aircraft and aircraft training systems. Our objectives were to
identify support system services that will enhance designers' use of technical information and to
defime the technical and organizational requirements for implementation. To achieve this, we
interviewed, surveyed or observed nearly 250 people in design and design-related functions in
government, industry, and academia. We also developed prototypes of recommended support
functions both to gauge the technical challenges of scaling up to actual systems and to obtain
feedback from potential users and other stakeholders in the effort.

The recommendations offered in this report emerged from these activities and, hopefully,
reflect descriptions of how design processes work and can be supported made by the many
individuals with whom we interacted. We are indebted to these individuals and their sponsoring
organizations for their time, interest, and insights. Listed below are individual team members who
contributed to this effort and the many organizations that permitted our interacting with design
personnel. These acknowledgments, of course, do not imply the endorsement of views and
conclusions expressed in this report. We take full responsibility for its content.

Individual Contributors

Armstrong Laboratory MacAulay-Brown, Inc.
Air Force Systems Command Dayton, Ohio
Wright-Patterson AFB, OH Martha Gordon

Donald L. Monk James R. McCracken
Tanya Ellifritt Kristin Rose
Roy Livingston
Kristin Morton Hudson Research Associates

• ', ,;-• Stuyvestant, New York
Search technology- .Janet E. Lincoln
Atlanta, Georgia Logicon, Inc.

John T. Baldwin Logicon, Inc.
(ian M. Caciopj&i Dayton, Ohio

.Jo�sph Coberty Sarah S. Swierenga
omas A. Coonan

Phillip C..Duncan .. Systems Research Laboratories
Paul R. Frey Dayton, Ohio
Norman D. Geddes - Dieter J. Zirckler
Robert J. Glushko
6haIries W. Howard Georgia Institute of Technology
William B. Johnson Atlanta, Georgia
David Resnick Alan L. Porter
Daryl R. Savell
Daniel R. Sewell ASD/EN
MarkD.Weaver . .... Wright-Patterson AFB, Ohio
Bradley J. Wiederholt Edward A. Martin

iv



Government Agencies

Armstrong Laboratory, Wright-Patterson AFB, OH
Air Training Command, T&E Squadron 3306, Edwards AFB, CA
ATF SPO, Wright-Patterson AFB, OH
Flight Dynamics Laboratory, FIGRC, Wright-Patterson AFB, OH
F-16 SPO, Wright-Patterson AFB, OH
Training Systems SPO, Wright-Patterson AFB, OH
Naval Training Systems Center, Orlando, FL

Aerospace Industry

Boeing Aerospace Company, Seattle, WA
Boeing Helicopter, Philadelphia, PA
Douglas Aircraft Company, Long Beach, CA
Lockheed-Califomia Company, Burbank, CA
Lockheed-Georgia Company, Marietta, GA
McDonnell Aircraft Company, St. Louis, MO
McDonnell Douglas Helicopter Company, Phoenix, AZ
Sikorsky Aircraft, Stratford, CN
Singer Link Company, Binghampton, NY

Workshop Participants

We are also indebted to the participants at four independent workshops who answered our
questionnaires and, in several instances, submitted to follow-up interviews:

"* Human Perception and Performance Workshop for System Designers
Moderator: Dr. Kenneth R. Boff, Armstrong Laboratory, Wright-Patterson AFB, OH
June 1986, Dayton, Ohio

"* Human Perception and Performance Workshop for System Designers
Moderator: Dr. Kenneth R. Boff, Armstrong Laboratory, Wright-Patterson AFB, OH
June 1988, Dayton, Ohio

"* Application of Human Performance Models to System Design
Moderator: Dr. Grant McMillan, Armstrong Laboratory, Wright-Patterson AFB, OH
May 1988, Orlando, Florida

"* Advanced Cockpit Displays and Controls
Moderator: Dr. Lawrence E. Tannas, Tannas Electronics, Orange, California
February 1989, Dayton, Ohio

William J. Cody
William B. Rouse
Atlanta, Georgia

Kenneth R. Boff
Wright-Patterson AFB, Ohio

v



TABLE OF CONTENTS

Page

LIST OF FIGURES ................................................................................................................. viii

LIST OF TABLES ............................................................................................................ ix

INTRODUCTION ........................................................................................................... I
Program Goals ....................................................................................................................... 1
Background ............................................................................................................................ 1
Overview ................................................................................................................................ 5

M ETHODS ................................................................................................................................ 7
W orkshop .............................................................................................................................. 7
Naturalist M ethods ........................................................................................................... 7
Literature Review ............................................................................................................. 9

CHARACTERISTICS OF DESIGN ..................................................................................... 10
Nature of Design Problem s ............................................................................................... 10

Design Goals ................................................................................................................... 10
Design States ............................................................................................................. 12
Relationships Among Elements of Design ..................................................................... 13

The Design Process ........................................................................................................ 14
W ho is the Designer? ....................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Stages of Design ......................................................................................................... 15
Groups and Organizations .......................................................................................... 16
Individual Designers .................................................................................................... 17
Design M ethods ............................................................................................................ 21
Use of Representation in Design ................................................................................. 22

Summ ary .............................................................................................................................. 25

INFORMATION ACCESS AND UTILIZATION ................................................................ 27
Inform ation W orld ............................................................................................................ 27

Artifacts ........................................................................................................................... 28
M ethods .......................................................................................................................... 29
Tools and Resources .................................................................................................... 29
Adjunct Inform ation .................................................................................................... 30

M ethods of Access and Utilization .................................................................................... 31
The Value of Inform ation ................................................................................................. 33

Benefits of Inform ation ............................................................................................... 33
Costs of Inform ation .................................................................................................... 36

Im plications for Support ................................................................................................. 39

vi



TABLE OF CONTENTS (cont.)

Page

SYSTEM REQU IREM ENTS ANALYSIS ......................................................................... 41
Support Philosophy ........................................................................................................ 41
System Goals ........................................................................................................................ 43

Goals Related to Access ............................................................................................... 43
Goals Related to U tilization ....................................................................................... 43
General System Goals ................................................................................................. 44

M ethod to Identify System Functions .............................................................................. 44
Consolidated Requirem ents .............................................................................................. 50

1.0 M onitoring the Designer ..................................................................................... 50
2.0 M onitoring the Design Inform ation W orld ........................................................... 51
3.0 Acting on the Design Inform ation W orld ............................................................. 52
4.0 Display Construction for the Designer .................................................................. 54

IMPLEMENTATION CONSIDERATIONS ...................................................................... 56
M ixed-Initiative System s ................................................................................................... 56

Autom ation Space ..................................................................................................... 57
Autonomy/Intelligence Com binations ......................................................................... 61
Processing Structure of M ixed-Initiative Systems ........................................................ 62

Autom ated Designer's Associates ..................................................................................... 64
Perceived Value of M ixed-Initiative Supports ............................................................. 64
Interactions with a Designer's Associate ....................................................................... 65
Designer's Associates Contrasted with Other Forms of Support ................................... 68

Softw are Architecture ..................................................................................................... 68
Structure of the Design Inform ation W orld .................................................................. 69
Structure and Processing W ithin a DA ......................................................................... 71

Technological Requirements ............................................................................................ 73
Technological Demands of the Design Information World .......................................... 73
Technological Dem ands of Designer's Associates ........................................................ 76

System Evaluation .......................................................................................................... 78

CONCLUSIONS ...................................................................................................................... 80

FUTURE SCENARIO ........................................................................................................ 82

REFERENCES ......................................................................................................................... 93

APPEND ICES ........................................................................................................................ 101
A. General Tasks and Alternative Support Concepts .......................................................... 101
B. Detailed Support Requirements For Information Access and Use .................................. 105

vii



LIST OF FIGURES

Figure Title Page

I Four classes of design support emerge from the combination of two types of
task and two types of intervention .............................................................................. 4

2 Design and test are complementary processes that create and evaluate, respectively,
different expressions of the artifact. Artifact properties are of more or less concern to
different stakeholders in the process ......................................................................... 14

3 Design objects can be described at different levels of abstraction and aggregation ..... 19

4 Archetypal design tasks associated with different levels of abstraction ....................... 19

5 Artifact representations vary along several dimensions ............................................... 23

6 The designer's world contains a variety of types and sources of information ............... 28

7 Designers have several alternative methods and sources for accessing information ......... 32

8 Uncertainty in design is associated with several issues ............................................... 34

9 Perceived risk is a function of uncertainty and importance of the consequences .......... 35

10 Perceived value of information is a function of perceived usability and utility ............ 37

11 The value of information changes dynamically with feedback .................................... 38

12 Primary objects in design can be classified in three types ............................................ 45

13 Designer's potential limitations apply to both access and use of information .............. 47

14 The support system performs six major operations .................................................... 48

15 Designers perform ten operations in accessing and using information ........................ 48

16 The designer and support system interact with each other and independently on the design
inform ation world ...................................................................................................... 50

17 The combination of autonomy and intelligence defines a space of possible in mixed-
initiative systems. Levels of autonomy are distinguished by entities that the system is
perm itted to affect .................................................................................................. 58

vmli



LIST OF FIGURES (Cont.)

Figure Title Page

18 An elaborated form of the basic system structure showing processing details
within the support system and human user ............................................................... 63

19 The support domain of a Designer's Associate; users can define the support system's level
of authority as desired ............................................................................................... 65

20 Limiting the DA to a region of mixed-initiative support eliminates processing elements
associated with inferring the designer's internal state and predicting his behavior
with m uch precision ................................................................................................. 66

21 A software architecture for a Designer's Associate showing the independence of this
system from the design world .................................................................................. 69

22 Associate forms of support require a rich information model of the design world ..... 75

A-I General system users perform thirteen types of task ..................................................... 102

A-2 Generation of alternatives can be supported in three general ways ............................... 104

A-3 Evaluation of alternatives can be supported in five general ways .................................. 104

A-4 Selection of alternatives can be supported in two general ways .................................... 105

A-5 Monitoring can be supported in four general ways ....................................................... 105

A-6 Plan execution can be supported in three general ways ................................................. 105

LIST OF TABLES

Table Title Page

1 Distribution of Crew System Designers Included In Data Collection ........................... 8

ix



INTRODUCTION

PROGRAM GOALS

The purpose of this program was to analyze the process of complex system design to
determine why designers often fail to consider potentially valuable technical information in making
design decisions. Based on this analysis, the goal was to define functional requirements for a new
class of supports that will enhance designers' access and use of such information. Termed

Designer's Associates, these supports derive from a thorough understanding of designers' tasks
and the services that intelligent computing technologies make possible. The capabilities and
services that an associate system for designers should exhibit -- what they are, their rationale, and
implementation considerations -- are the subject of this report.

BACKGROUND

This project was performed between the late 1980s to early 1990s, a period that saw
profound change in product design and development processes in the U.S. Pressures for
improving the process emerged from several quarters. These included disasters associated with

human error in several large-scale systems (Perrow, 1984), a surge in litigation over product
liability (Burger, 1991), offshore industrial competition (Packard, 1986), concerns with

technology investment and ineffective transfer into practice (Buxton & Malcolm, 1991; U.S.
Congress, 1989), rapid evolution of computer-based engineering tools (Begg, 1984; Floyd, 1991;
Forbus, 1988; Hadley & Sommerville, 1990), and others. Numerous reports criticized U.S. global
competitiveness and called for a renaissance in the scientific, technological and educational bases
of design and product development (Eder, 1988; U.S. Congress, 1989).

These pressures served to focus attention on the "design process," how artifacts come into

being, and also stimulated many corrective efforts. Both basic and applied research into the
design process experienced substantial upswings (American Society of Mechanical Engineers,
1986; Finger & Dixon, 1989a, b; Mostow, 1985; Rouse & Boff, 1987; Steier, 1990). Managerial

interventions such as Total Quality Management and concurrent engineering came into vogue
(Linn & Winner, 1986; Rosenblatt & Viatson, 1991; Salzberg & Watkins, 1990; Winner, et al.,
1988). Many prescriptions for how to design products emerged in the public and proprietary
literature (Emery & Parks, 1987; Linton, 1987; Pahl & Beitz, 1984; Rouse, 1991; Suri &

Shimizu, 1989; Whitney, 1990). Makers of engineering design tools and information systems

• s I



introduced hundreds of paper- and computer-based products (e.g., Begg, 1984; Bogner, 1988;

Floyd, 1991; Forbus, 1988; McMillan, 1989). Educators began exploring ways to revamp

curricula to improve engineers' and technical specialists' preparation (Borovansky, 1987; Eder,

1988; Hazelrigg, 1988). These efforts shared the common objective of improving the product

development process and infrastructures in hopes of improving the resulting systems.

Within this context, our initial goal was to improve the human usability of complex

systems in general and crew systems for military aircraft in particular. Usability is a summary

term for a host of finer-grained attributes. Put simply, a system is more usable the easier it is to

learn, easier it is to operate, the fewer people it requires to operate and maintain, the more

tolerant it is of misuse, and so on. We had focused on this system attribute because, despite
infusions of advanced technology, newer systems were performing at lower levels and for greater

costs than expected (cf. Beevis, 1987; Johnson, 1987; Promisel et al., 1985). These shortfalls
were frequently traced to usability problems (Gould & Lewis, 1985; Hammond et al., 1983;

Meister, 1989; Promisel et al., 1985; Wahlstrom et ai., 1985).

Earlier work had demonstrated that design decisions which affect usability often were

made without relevant human-related technical information (Boff, 1987a, 1987b, 1988, 1990).

Such information pertains to the anthropometric, biological, behavioral, performance, learning,

reasoning, and social characteristics of system users. In some instances, the information was
simply not available. But in many cases, available information was overlooked, misunderstood, or

misapplied. These problems especially plagued individuals trained in disciplines otbhr than human

engineering (Gardiner & Christie, 1987; Hammond et al, 1983; Lintz, Askren & Lott, 1971;
Meister & Farr, 1967; Meister et al., 1969). Consequently, toward the goal of better integrating

human engineering information into the design process, the parent program (called Integrated

Perceptual Information for Designers) for this effort had introduced several successful products

and services (Boff, 1987b; Boff, Kaufman & Thomas, 1986; Boff & Lincoln, 1988).

As we were concentrating on usability, other investigators were reporting design

deficiencies along system attributes that were sacred ground to their domains. Examples include

assembly, manufacturability, testability, reliability, and many others (Finger & Dixon, 1989b; Suri

& Shimizu, 1989; Whitney, 1990). Deficiencies varied with product domain, but the source of the

problems was similar to what we had observed -- suppliers believed that useful information about

assembly, manufacturability, etc., was available, but was not being factored into design decisions.

Many of these transfer failures were associated with information in archival sources that were

external to the design organization (e.g., Allen, 1977; Borovansky, 1987). However, cases of

2



system-specific information that failed to transfer from one area to another within the same

organization were equally common (Winner, et al., 1988). The latter of these anomalies

suggested a "stovepipes" image of groups within design organizations, and helped create the

impetus for concurrent engineering initiatives (Linn & Winner, 1986).

The similarity between others' complaints and our own demonstrated that difficulties with

access and use of information in design are independent of particular disciplines and system

attributes (Rouse, Cody & Boff, 1991). The problem is not confined to human-related
information; it is pervasive. Moreover, it has at least three deleterious effects. First, product

quality may suffer when design decisions reflect a narrower base of relevant information than is

available. Second, the design process itself becomes less efficient when product deficiencies must

be reworked that could have been prevented with better information transfer. Finally, investments

in R&D and design efforts are lost when the concepts, principles, methods, tools, components,

lessons, data, etc., that they foster are left to languish in the archives.

The pervasiveness of this problem caused us to shift from an information-centered

perspective to a designer-centered perspective. Rather than concentrate on promoting a

particular class of information, the goal became to specify an information system that could help

any design participant obtain any type of relevant information. Aside from technical barriers

associated with linking up to information, this goal required our understanding why designers use
some types of information and discard others. The designer's information world is massive. It

contains elements generated by the project such as requirements, conceptual designs, engineering

drawings, prototypes, test data, and so on. It contains project-independent sources such as past

designs, new technology, regulations, principles, tools, models and data, including human-related
information. The evidence suggests that designers use a very small fraction of the total store (cf.

Allen, 1977; Rouse, 1986). By distinguishing what designers use from what they ignore, we

sought to understand characteristics of information that designers value. This knowledge would

be instrumental to changing information, the designer, or both to facilitate use and, thereby,
improve design. Thus, support systems that enhance information transfer were expected to have

general appeal. Figure 1 depicts these overall support objectives in terms of the two broad classes
of designer task and two approaches to task support.

Information access and utilization, illustrated by the left and right circles in Figure 1,
represent the targets for support. While not synonymous with design, these tasks are integral to

good practice and a part of the process that we believed would be amenable to support. For

present purposes, access refers to activities that produce an object from the information world for

3



subsequent use. Access has both physical and cognitive components. Utilization refers to

operations performed on or with an object to support problem solving and decision making.

Training In
Information Access of Information

Information Design Information

Aiding

Decision Support
Aiding the Access Aiding the Use

of Information of Information"

Figure 1. Four classes of design support emerge from the combination of two types of task and
two types of intervention.

Figure 1 also depicts two general ways in which human performance in complex task
domains can be supported (Rouse, 1991). Training and coaching refer to investing in people's

knowledge and skills so that they possess the potential to perform without help. Aiding and

decision support refer to augmenting people's performance directly, often through automated
means. These supports represent complementary forms of adaptation (Rouse, 1986). Training is
adaptation of the user that causes him or her to adopt more effective or efficient task strategies.
Aiding involves adapting the environment to the user in order to complement the user's style and

abilities and overcome his or her limitations.

4



As suggested by the darkened regions in Figure 1, mapping the two types of support to
the two types of task yields four support classes. Put simply, one can train or aid the designer in

accessing information, and one can train or aid the designer in applying information to solve
problems and make decisions. Within each class, a wide variety of specific supports are possible.
Comprehensive support systems will integrate all four forms. It is our intention through this
report to foster development of such systems.1

OVERVIEW

This document is intended for people who develop information support systems for

designers and for those who procure them. Its purpose is to present and rationalize the goals,
functions and objectives for such systems. In addition, it identifies implementation requirements

for delivering the proposed functions.

1 We recognized the distributed and collaborative nature of system design, and were familiar with emerging
supports that are emerging for group work (cf. Corcoran, 1988; Galegher et al., 1990; Kraemer & King, 1988).
However, we focused on support requirements for designers when they work individually for three primary reasons.
First, our investigations suggested that individuals and groups play different roles in the design process. As
discussed in greater detail in this report, individual designers perform the bulk of technical tasks, whereas groups
function primarily to manage individuals' work by allocating work and reviewing task results (Rouse & Boff, 1987;
Rouse & Cody, 1988). There is no question that design management can be supported and improved; however, our
interest was in supporting technical tasks.

Second, our investigations suggested that design processes could be enhanced by reducing cross-
disciplinary communication difficulties (cf. Boff, 1987a). A variety of approaches are possible. Groupware may
help achieve this. Total quality management and concurrent engineering also seek to remove disciplinary
"stovepipes" through managerial intervention. We elected to take an alternative approach based on innovative
computer-based education (cf. Boff et al., 1991) -- in effect, alleviating communication problems by increasing
each contributor's knowledge about others; domains. A support system can introduce a person to concepts and
practices in specialties other than his own so that he becomes a more effective team player. Furthermore, the
support can be delivered "just in time" as the specialist needs it, rather than through traditional, and more arduous,
educational practices. This approach necessarily focuses on individual's knowledge and skill, not on group
activities per se.

Third, the mixed-initiative supports advocated in this report require a robust model of the process being
supported. Our review of research on group dynamics in design suggested that the theoretical and empirical bases
were not adequate for constructing such a model. This is not to say that emerging "groupware" is or will be
ineffective. Simply, the present versions of these aids are not mixed-initiative systems.

Finally, it should be noted that nothing prevents the supports that we advocate from being used in group
settings where participants discuss design issues, negotiate system characteristics, and so on. Moreover, given
information about what is being discussed, a mixed-initiative system could provide the same types of support that it
does for users working alone -- search and retrieval, compiling information, transforming displayed information in
forms that the designer likes best, etc.

5



Following a brief review of study methods, we first identify designers' information needs
that a support system should help to meet. In keeping with human engineering traditions, this
required understanding what designers do and the types of information they value in performing
these activities. Elsewhere we have called this the "human factors of design" to emphasize our

focus on designers, not their end-users (Boff, 1990; Rouse, Cody & Boff, 1991). Our analysis
concentrates on limitations that designers exhibit with respect to access and use of information in
support of design tasks. Given these needs, we then define a list of support system goals.
Functional requirements to achieve these goals are presented next. This leads to consideration of
how system functions might be implemented.

Several implementation schemes are possible, some more automated than others. We
focused on "mixed-initiative systems," a new concept in intelligent computer-based supports. In
these systems, decision-making authority and task performance can be delegated to machine
intelligence to augment human performance. Based on successes that Rouse and his colleagues
have had with mixed-initiative systems in the aviation and process control domains (Geddes,
1989; Rouse, Geddes & Curry, 1987; Rouse, Geddes & Hammer, 1990), we examine the
prospects for applying this technology to information access and use in design. We consider
technological needs, system architecture, and how such a support system might be evaluated. The
report ends with a future scenario of what design might be like with the support of a mixed-
initiative Designer's Associate.

6



METHODS

To examine the design process and designers' tasks, we conducted a workshop on the

nature of system design, collected information from practitioners in industry and government
using "naturalist" methods, and reviewed the literature on design and design support.

WORKSHOP

The workshop, held in March 1986, explored design across engineering systems, software,

consumer products, and architecture. Thirty individuals convened for a 3-day meeting. They

represented government, industry and academia, and had backgrounds in engineering, computer
science, psychology, industrial design and architecture. Participants addressed three main topics:

1) the nature of design and designers from both individual and organizational perspectives; 2)
design tools in terms of their psychological impact and technological requirements; and 3)

organizational environments within which designers work and how these environments influence

designers' behavior. Complete results from the workshop appear in Rouse and Boff (1987).

NATURALIST METHODS

Design takes place in the industrial business environment and is not easily studied in the
laboratory. Therefore, we adopted methods from social psychology and ethnology -- interviews,

questionnaires, and direct observation -- to study designers on location. Our principal interests

were in the tasks these individuals perform, where and how they obtain needed information,
difficulties they have, and their reactions to various forms of computer-based support.

We conducted 62 interviews '.vIh aerospace crew systeoi designers (Cody, 1989),

collected 168 questionnaires from participants at four different workshops devoted to uses of

human-related information in design (Cody & Rcaiie, 1989; Rouse & Cody, 1989a, 1989b), and
took up residence for six months with a 10-member Air 7orce group in the early stages of their

designing a new cockpit for a fighter aircraft (Sewell, 1990). Table I summarizes who we studied

according to nature of their work, job specialty, and data collection method. Individuals included
under System-Independent R&D pursued applied research and advanced technology

development. People under System-Specific Design & Development worked on aircraft programs
such as the Air Force's Advanced Tactical FiR)' ,..r -,i the Army Apache helicopter, either to

define system requirements or respond with design specifications. The Engineer category
included people trained primarily in electrical, mechanical, structural, and software domains.

Human Factors included behavioral scientists and specialists in training and education.

7



Table 1. Distribution of Crew System Designers Included In Data Collection

System-Independent System-Specific
Research & Development Design & Development

Human Human
Data Collection Method Engineering Factors Engineering Factors Total

Interviews
Number 16 7 28 11 62
Ave years experience 15.8 11.7 21.5 17.9

Questionnaires
Number 32 49 56 31 168
Ave years experience 14.8 12.4 14.4 9.0

Observation
Number .... 3 7 10
Ave years experience 6.3 9.1

Total
Number 48 56 87 49 240
Ave years experience 15.1 12.3 16.5 11.0 14.1

Of the 240 individuals, 118 were Department of Defense employees, 105 worked in

industry, and 17 were from academia. Regarding the primary purpose of their work outputs, 182

people contributed to operational systems or their technology base (e.g., a particular aircraft or

helmet-coupled displays); 58 contributed to training systems or training technology (e.g., aircraft

simulators). Overall, the 240 people averaged 14.1 years of job experience, ranging from 1 to 35

years.

Given our interest in common needs across design disciplines, it is worthwhile to consider

whether the 240 individuals were representative of archetypal "designers." Our sample was

composed mostly of people who contribute to human-machine systems and, therefore, could be

questioned for being parochial to this domain. We believe, however, that our sample was

representative of a broad base of designers for two reasons. First, crew system design requires

expertise from over 40 technical disciplines (cf. Cody, 1989; Rouse, Cody, Boff, & Frey, 1990),

many of which were represented our sample. Second, aerospace designers face problems of

comparable complexity and use tools and methods that are similar to those used by designers in

8



the process, power, and manufacturing sectors. Consequently, we expect that they exhibit similar

problem-solving and information-seeking behaviors. In contrast, our sample may differ along
these dimensions from designers of consumer products and other less complex systems.

We also recognize that conclusions drawn from naturalist studies tend to be fairly
qualitative and open to alternative interpretations. "W.hen we began this work, the research base

on the human factors of design was sparse. Although many prescriptions for how design ought to

be done were available (e.g., Nadler, 1985; Ostrofsky, 1977; Spillers & Newsome, 1989), there

were few studies on how design actually is practiced and why. Under these circumstances, we

felt that naturalist methods would produce greater insight into the character of this complex

process than would conventional experimental approaches that focus on few factors and

relationships at a time. Other "naturalists" had reached similar conclusions at about the same time

(e.g., Curtis, Krasner & Iscoe, 1988). Since then, the literature on design activity has begun to

grow, as exemplified by Ullman et al. (1988) in mechanical engineering, Schon (1983) in

architecture and structural design, and Malhotra et al. (1980) and Guindon (1992) in software

development.

LITERATURE REVIEW

Throughout the program, we reviewed papers, books and technical reports on the nature

of design, design theory, prescriptions for designing, organizational and social phenomena in

design, cognitive and behavioral phenomena in design, as well as design support systems. These

sources represented a variety of perspectives including management sciences, systems

engineering, traditional engineering fields, computer science and artificial intelligence, human

engineering, several branches of psychology (cognitive, engineering, social, consumer), human

factors, information and library sciences, architecture and art. In addition to the references

section of this report, bibliographies of works on design are available (American Society of

Mechanical Engineers, 1986; Bruns & Gerhart, 1986).

9



CHARACTERISTICS OF DESIGN

In order to define designers' needs, it is important to understand characteristics of design

problems and the processes by which these problems are addressed.

NATURE OF DESIGN PROBLEMS

It is generally acknowledged that design is different from other sorts of problem solving
such as decision making, diagnosis, and negotiation. While the overall goal of design is relatively

clear, in contrast to these other varieties, design problems have been described as "wicked." The
initial state, end state, and legal transformations between the two are all ill-defined (Smith, 1981).
As a result, the functional demands posed by design problems tend to be unique.

Design Goals

Many definitions for the overall goal of design have appeared. One useful definition

composed from several sources (American Society of Mechanical Engineers, 1986; Bruns &
Gerhart, 1986; Gero, 1990; Goel & Pirolli, 1989; Hazelrigg, 1988; Mostow, 1985; Nadler, 1985;
Newsome et al., 1989; Smith & Browne, in press) is as follows: the overall goal of design is to

specify an artifact whose functions and attributes satisfy requirements and criteria held by

stakeholders in the effort. Several elements of design that are captured in this definition merit

comment.

Artifacts, the things that get designed, can be described as complex collections of
attributes that assume particular values (Buur & Andreasen, 1989). Physical artifacts, for

example, have particular values of size, reliability, and exhibit certain levels of performance.
Software artifacts are more or less modular, fast, and free from logical errors. A given artifact
has myriad attributes. These are related to one another in a tangled hierarchy (Eder, 1988). The

designer selects values for basic or foundation attributes directly, such as materials used, layout of
components, and tolerances. In turn, these choices drive the values of attributes at higher levels

of abstraction and aggregation in the artifact. Higher-order attributes, such as ease of use and

operating cost, are often termed "emergent" both because they result from more fundamental
design choices and because their values emerge with certainty only after the artifact is

implemented (Hazelrigg, 1988).

10



While the artifact eventually does emerge from the overall process, most design has
become the production of detailed instructions or specifications, rather than of the artifact per se
(Goel & Pirolli, 1989). This is due to the separation of product development into design,
manufacture, distribution and use in modem society. This characteristic has two implications.
First, designers spend much of their time generating and using representations of the artifact and
its effects on the physical, social and economic environments as opposed to the artifact itself
(Buur & Andreasen, 1989; Shah & Wilson, 1989). Second, since the designer is not the
fabricator, there is a premium on clarity with which fabrication instructions must be expressed.
The amount of time required to produce these specifications is directly related to the complexity

of the artifact.

Conceptualizing artifacts in terms of attributes helps to define various terms used in design
practice. For our purposes, requirements refer to both goals and constraints. Goals are the
raison d'6tre for the design. Constraints are conditions that the design or design process must not
violate. While not valued per se as goals are, constraints help to identify unacceptable designs.
Requirements are usually stated in terms of the problem to be solved without implying a singular
solution (Smith & Browne, in press). Criteria refer to value(s) or ranges of values that attributes
can assume and still be judged acceptable. Specifications are precisely stated settings of attribute
values, and are normally called out in a formal document. Although not inviolate, criteria tea d to
apply to emergent properties such as performance, reliability, and usability, whereas specifications
more often pertain to basic properties like tolerance. Thus, specifications can be considered a
special class of criteria.

As a final note about the definition of design goals, attributes can be thought of as
"owned" by stakeholders in a design effort (Rouse, 1992, in press). For instance, people who
request artifacts decide what purpose it will help them or their constituents to achieve. Product
users decide, implicitly or explicitly, how easy to learn and use a system must be. Buyers, who
may be neither requesters nor users, judge whether benefits outweigh costs. Stakeholders also
include people who may not be interested in the artifact per se, but in its not violating important
constraints. Vendors, for instance, have a stake in ease of fabrication and will balk at designs that

exceed their fabrication capabilities. Similarly, project sponsors have a stake in the design process
insofar as they want it not to exceed constraints on resources and schedule. Many other
stakeholders and interests can be imagined.

11



Design States

Regarding initial state, most design efforts are marked by radically incomplete
requirements and criteria for success. That is, what the problem (or opportunity) is and how
solutions will be judged are both unclear. There are several reasons for this. First, design is
usually carried out for a client and, therefore, the designer cannot determine all relevant goals and
constraints by introspection (Smith & Browne, in press). Second, people tend to be poor at
stating their needs in terms that translate easily into design objectives (Rouse, 1986). They are
much better at recognizing satisfactory solutions than they are at specifying them (Guindon, 1992;
Malhotra et al., 1980). This relates to a third reason. Needs that launch a project may not reflect
what a client wants after he realizes opportunities that a new design makes possible (Brown &
Chandrasakaran, 1989; Gero, 1990). This encourages continual discovery and refinement of
requirements across the entire development effort. Put simply, in contrast with most textbook
depictions, requirements definition is never quite done. As a result, problem formulation is
usually a central issue in design, much more so than in other sorts of problem solving (Hunt,

1987; Rouse, 1986).

The end state of design is also marked with quite a bit of uncertainty. Proof that a
particular solution meets requirements is often difficult to establish for one or more of several
reasons. First, it is generally difficult, if not impossible, to forecast precisely the effects that a
new artifact and its environment will have on one another (Smith & Browne, in press). Thus,

conclusions that a design is a success must await implementation and, for artifacts that have wide-
ranging or slowly evolving effects, this can take a long time.

Second, attributes vary in the precision with which they are defined and, therefore, in the
precision with which they can be measured in support of evaluation. Some attributes can be
measured directly and quantitatively (e.g., size, mass, speed). Others may be quantifiable, but are
more difficult to measure (e.g., reliability, ease of assembly, durability). Still others are
quantifiable only with subjective measurement practices (e.g., aesthetic appeal, acceptability, and

ease of use). Compare the difficulty of measuring an artifact's size or mass with its "usability."
Related to this measurement issue, criteria for acceptable attribute values are more or less precise
as a function of clarity and precision of the attribute's definition. Thus, the ease of verifying that a
design meets criteria varies with attribute. Establishing that the artifact meets the physical criteria
is generally easier to achieve than establishing that it meets criteria related to learnability and use,

for instance.

12



Finally, even if measuring attribute values and comparing them to criteria were
straightforward, it is often difficult to identify who is the proper stakeholder to poll for a
judgment. Attributes usually map to stakeholders in complex ways. Moreover, stakeholders may
possess different and conflicting definitions for the same attribite or disagree with what value an

attribute ought to assume in the final product (Eder, 1988). Thus, identifying who the
stakeholders are, especially if the artifact introduces major changes in social or physical

environments, and reconciling their differences, are often more central to design success than
overcoming technical problems (Rouse, 1991).

Relationships Among Elements of Design

Figure 2 relates several characteristics about design made to this point. Focusing on the
left-hand side, the figure suggests that in design, one generally proceeds top-down from observing
the operational context to an artifact, although there is a great deal of iteration among steps.
Developers express their observations of operational conditions in terms of the problems that

people have. Problems are converted into needs which, in turn, are translated into the behavioral
requirements and formal specifications for constructing the artifact. Each of these steps is
typically documented in more or less formal ways. Such documentation subsequently serves in

comparisons with the actual system.

Test and evaluation tends to proceeds in the opposite direction from the bottom of the
hierarchy upward toward the emergent properties in the system. In principle, testing first focuses
on whether the artifact "works" from an engineering perspective. Given that it runs, demonstrates
no fatal flaws, etc., then the artifact can be used in comparison with documented results of the

design effort. "Does the system meet specifications?"; "Does the system achieve its behavioral
requirements?"; and so on up the scale from basic system properties to the broader questions of
utility and cost effectiveness. Although not apparent from the figure, the artifact used for testing
may range from a rough sketch on paper, to a low fidelity mockup, to a prototype or a production

copy of the actual system. The rigor of test procedures are usually adjusted according to the level

of artifact fidelity (Rouse, 1991).

The right hand-side of Figure 2 illustrates the mapping of attributes to stakeholders.
System developers tend to be interested primarily in lower-order questions which collectively ask

"Does the system work?" Given the system works, system users and buyers are much more
interested with questions of validity, acceptability and viability, i.e., "Is the solution worth it?" As

all successful product developers eventually discover, a development effort can derail at any level

13



in the hierarchy. Perhaps behavioral requirements are not achieved. Or an engineering marvel
turns out to be unacceptable to users. Or a well-engineered solution that users like turns out to be

financially untenable.

OPERATIONAL - VIABILITY -, Do Gains Outweigh
CONDITIONS Costs?

Buyer

PROBLEMS ACCEPTABILITY - ,Do Individuals and Their r

End
User

zS VALIDITY •,Does Solution As-Built/

0z
BEHAVIORAL EVALUATION -4 Artifact Achieve

REQUIREMENT Requirements?

SYSTEM VERIFICATION -4 Artifact - Specification?Deeor
SPECIF ICATIONSDelor

ARTIFACT - 4 ENGINEERING - Bugs?
TESTS Throughput?

Figure 2. Design and test are complementary processes that create and evaluate, respectively,
different expressions of the artifact. Artifact properties are of more or less concern to
different stakeholders in the process.

THE DESIGN PROCESS

Understanding characteristics of the designer's goals and problem is necessary but not
sufficient to specifying supports. This also requires understanding the nature of the design
process -- who is involved, when, and what do these contributors do? Answers to these questions

are much more subtle than at first might be imagined (cf. Rouse, 1987a; Rouse & Cody, 1988).

14



Who is the Designer?

We defined the designer to be anyone who intentionally influences the function or form of
the evolving artifact (Rouse & Boff, 1987). With little reflection, one sees that this definition
admits many contributors, especially in complex systems. Managers, specialists from several
engineering and technical disciplines, manufacturers, marketers, trainers, customer support
people, and several others intentionally influence the product -- many people beyond those whose

job title is "designer." This is due to the variety of interests that must be balanced and to the
varieties of knowledge and skill required to achieve this. Beyond members of the design team,
there axe also many stakeholders in most design efforts (Rouse, 1992). While these individuals

may not intentionally affect the product, their opinions and values are, or should be, taken into
consideration by those who do.

With the number and variety of people involved, design obviously is a collaborative, multi-
disciplinary process that is distributed across temporal, organizational and geographic boundaries
(Allen, 1977, 1986; Boff, 1987a; Curtis, et al., 1988; Rangan & Fulton, 1991; Rosenblatt &

Watson, 1991). Within the same project, participants are usually organized according to system
component (e.g., sensors, navigation) and type of analysis (e.g., aerodynamics, structures,

reliability) (Allen, 1986). These groups interact in two general ways: directly through a variety of
social exchanges and reports, and indirectly via the effects that their decisions and actions have on
the product, design resources and shared information.

As a consequence of the distributed nature of design, decisions emerge both from
individuals' activities and from activities when individuals collabcrate. Further, decisions are not
confined to a single early stage of the overall process. Contributors make decisions at all points in
the life cycle. For instance, R&D decisions influence what technology alternatives will be
available to product developers. Marketing decisions affect what functional requirements should

be met in the new system. Engineering decisions govern both functional and structural
characteristics. Procurement and sales decisions affect how the system is employed. Operational

experience, including training, affects the definition of new requirements as the cycle repeats itself.

In short, decision making in design is pervasive.

Stages of Design

Most commentators have similar characterizations of the process of design. Stage models

are common, both at levels of the overall program (Figure 2) and the individual designer.
Programs are said to move across stages of requirements definition, conceptual design,

15



preliminary design, detailed design, fabrication, and deployment (Blanchard & Fabrycky, 1981).

Individuals' activities on particular issues are described in terms of problem formulation, design

generation or synthesis, design evaluation or analysis, and optimization (Rouse, 1986).
Regardless of the labeling of the stages, virtually every model or description of design emphasizes

iteration or cycling among processes. At the level of the individual, this has been expressed as
cycling among design states (Carroll et al., 1979) or among different levels of abstraction and

aggregation (Rasmussen, 1986, 1988).

Within stages, the design process can be examined both at the level of groups and the

organization as well as at the level of individual designers.

Groups and Organizations

Design groups or teams are central to designing complex systems. Thnee teams are

multidisciplinary. Not surprisingly, engineering disciplines usually lead we effort (Cody, 1989).

Designers spend a fair proportion of their time in group settings. For journeymen and

seasoned designers, the time allocation is typically 30% in group activities and 70% in individual
activities. Upper-level senior designers spend more time in group activity, serving as coaches and

mentors.

The design group or team has several roles. The group is usually involved with

decomposing the statement of work or other descriptions of objectives, requirements and

specifications. Based on this decomposition, the group will set technical goals, as well as

allocations of person-hours and schedule, for members of the group. Pursuit of these technical
goals is predominantly an individual activity. The group subsequently reviews the results of these

individual efforts.

The organization, both the company and the marketplace, strongly affects group and

individual activities. Company policies and procedures directly influence activities. Success

criteria and reward mechanisms, both internal and external to the company, influences motives

and values. Corporate and market cultures influence, for example, relative weightings on
performance, cost, and quality.

Several investigators have noted characteristics of group communications that pose

substantive demands on individual designers (Curtis et al., 1988; Kraemer & King, 1988). In

16



face-to-face encounters, demands emerge from unsystematic coverage of issues, information
overload per individual in real-time, failures to record information, misunderstood messages,
incomplete communications due to dominance by one or a few individuals, unfocusing, peer
pressure, and premature closure. Outside the meeting context, demands emerge from
communications related to notifying others about decisions and actions, and from keeping abreast
of others' design activities and changes.

Of particular importance are problems with cross-disciplinary communications. As Boff
(1987a) has noted, the multidisciplinary nature of system design can cause design communication
to suffer from a Tower of Babel phenomenon -- everyone talking at each other from different
conceptual frameworks in different jargon and terminology.

Rouse, Cody & Boff (1991) explored the cross-disciplinary issue in some depth. They
noted that the nature of design problems that different disciplines on a design team resolve
inherently require different approaches. As a result, different disciplines must employ different
tools, methods and computational approaches.

This, in and of itself, however, is not the difficulty -- design problems require these
different approaches. Communications problems emerge when people use their specialized tools
and methods, which are well suited to a particular class of problems, as metaphors with which
they view all problems. Thus, for instance, many electrical engineers view all problems in terms
of control systems analogies (i.e., dynamic state equations and feedback control laws). Similarly,
many human factors practitioners, given time and resources, address all p, blems experimentally
and with analysis of variance (i.e., linear statistical models). Few people realize that their
representational framework so dominates their perspective. Consequently, they may be unaware
that they interpret every problem as a type of nail that their hammer will fit, resulting in
miscommunications.

Individual Designers

Much of our data collection, especially with questionnaires and observational study,
focused on design problems, information sought in solving these problems, and possible design

support functions. Understanding these issues required us to explore what tasks and activities

designers perform as they seek information and solve problems.

17



Several initial hypotheses emerged from early data collection efforts and were tested,
usually informally, in subsequent data collection efforts. This series of efforts eventually led to a
more cogent description, which states that design occurs within the three-dimensional space
depicted in Figure 3 and 4 (Rouse & Cody, 1989b). Figure 3 depicts the abstraction and
aggregation dimensions of the design space. This characterization is based on Rasmussen's
(1988) constructs. The definition of aggregation is obvious from the figure. Abstraction is more

subtle.

The concept of abstraction relates to the types of representation relevant to design. The
three levels shown in Figure 3 can be defined as follows:

" Purpose: Representation of design requirements, objectives to be met, problems to be
solved, etc. via requirements documents, scenarios, simulations, etc.

" Function: Representation of relationships (i.e., physical, computational, temporal,
etc.) via diagrams, equations, simulations, etc.

" Form: Representation of appearance (i.e., assembly, geometry, etc.) via drawings,
pictures, mockups, etc.

Figure 4 depicts the task dimension of the design space. These tasks, and perhaps others

that are similar in nature, can be viewed as the designer's proximal intentions as he works toward
developing a complete design description. Although not shown in the figure, these activities are
also pursued at each level of aggregation -- system, subsystem, etc.

Based upon interview and questionnaire studies (Cody, 1989; Rouse & Cody, 1988,
1989a), we hypothesized that design can be characterized as sequences of the activities in Figure
4 that form paths or trajectories across levels of abstraction and aggregation in this artifact space.
"Moves" along the three dimensions can be seen to represent different types of tasks.
Translations along the abstraction dimension are associated with specification (moving from
higher to lower levels of abstraction), and design justification (lower to higher). Decomposition
and integration are associated with moves along the aggregation dimension. Moves among tasks

within the same levels of abstraction and aggregation are associated with the generation and
reduction of variety via synthesis and evaluation activities.

In one study (Rouse & Cody, 1989a), we developed a fictional design scenario based on a
representative task sequence. Practicing designers read the scenario, and then rated its realism
and provided explanations for their ratings. The practitioners said that, from their experience, the
scenario was a familiar and realistic portrayal of how designers behave. Although this method for

18



LEVEL LEVEL OF ABSTRACTION
OF

AGGREGATION Purpose Function Form

System

Subsystem

Assembly

Component

Figure 3. Design objects can be described at different levels of abstraction and aggregation.

PURPOSE FUNCTION FORM

Explore Problem/Need Conceptualize Solution Compose Form of Solution
Functionality

Study current requirements Review functionality of past Review forms of past designs --
(e.g. Statement of Work) -- read designs -- read and analyze read and analyze
and analyze

Study scenarios of operational Synthesize/derive input-output Synthesize form of solution --
need -- view and analyze relationships -- create and create, visualize and 'sketch"

represent

Review requirements for past Develop model of functionality -- Prototypelmockup solution --
designs-- read and analyze integrate, analyze and test integrate and fabricate

Explicate performance criteria Predict performance (exercise Measure performance (collect
and attributes -- integrate and model) -- calculate/simulate, data) -- observe, measure,
decide analyze and interpret analyze and interpret

Figure 4. Archetypal design tasks associated with different levels of abstraction.

19



testing the hypothesis is somewhat indirect, the results of the study supported the notions

captured by the design space.

Since this study, considerable support for the model has emerged from observational

studies of designers working on actual problems. Guindon's (1992) series of studies with

software designers is representative. Starting from an overall requirements document for a
software system, Guindon's subjects appeared to move chaotically from task to task and between

knowledge domains, especially during early stages of design. They developed partial solutions
that contained pieces of different subsystems and these were expressed at various levels of

abstraction. These interim solutions appeared to serve as hypotheses which the designers used to

test their understanding of requirements. Such tests often led to discovery of unstated or new
goals and constraints and to drastic restructuring of either the problem, the solution, or both..

Subjects were also very eclectic in their choice of methods. Faced with different instknces
of very similar design problems, they might on one occasion proceed bottom-up to arrive at a

tentative solution, and on another occasion, decompose the problem in a structured top-down

manner. Similarly, when they needed additional information about some issue, sometimes they

accessed sources external to the problem (e.g., a text), sometimes used a tool to produce the

information (e.g., computer-based drawing package), but most often, relied on their own best

judgment from past experiences with similar issues. Their verbal commentary about their

strategies indicated that choice of method was driven by context-specific factors.

Findings showed that design activities are recursive. For example, information needed to
address a design problem often stimulates the need to have information about the information

(e.g., where it might be located; estimates of its validity). The need for information part way

through a task forces the designer *.- suspend to original task, resolve the information need, and

then pick back up with the originai iask. Thus, with recursion comes the need to keep track of

tasks and information that are left in partial states of completion.

Finally, activities that applied to the primary artifact also pertained to information

generators such as models and simulators. In a kind of "design within design," the designer must
develop methods and tools that produce information which, in turn, helps him to make decisions

about the primary artifact. In this way, the design world becomes populated with information

generators which, like the primary artifact, must be retrieved, evaluated, explained, managed, etc.

20



From these and other observations, Guindon (1992) concluded that design is opportunistic

and does not uniformly follow a top-down approach. Schon (1983) referred to similar behavior

among architects and engineers as "iteratively uncovering phenomena and seeking explanations."

Similar observations have now been reported in studies of mechanical engineering (Ullman et al.,

1988), software design (Malhotra et al., 1980), and consumer product design (Ballay, 1987),

lending credence to the generality of the description in Figures 3 and 4.

Aside from knowing about typical task sequences, it is also important to understand the

demands posed by the individual tasks in Figure 4. Of particular interest are the designer's use of

systematic methods for achieving these tasks and his creation and use of design representations.

Design Methods

As suggested above, design is generally described as a heterarchical, somewhat chaotic

process involving transitions back and forth between synthesis and analysis at several levels of

abstraction and aggregation. Various attempts have been made to organize design activities into

prescribed steps, typically involving a top-down hierarchical process. These approaches have the

advantage of fostering systematic evolution of solutions, but the disadvantage of potentially

inhibiting insights and innovation.

Design methods can be distinguished along several dimensions. One dimension is the task

supported. There are methods for problem definition, decomposition, synthesis, evaluation and

optimization. Another distinction is between general and focused methods. Examples of general

methods include work breakdown analysis and overall systems design (Nadler, 1985). Focused

methods on narrow tasks are typically discipline-specific. In human engineering, for example,

methods for allocating functions between human and machine (Rouse & Cody, 1986) or for

design of displays for human users (Frey et al., 1984) exemplify focused methods. Methods can

also be distinguished as formal or informal, and as discipline-specific or discipline-independent.

and to another due to differences in the types of phenomena and representational forms used to

understand and manipulate these phenomena (Rouse, 1982; Rouse, Cody & Boff, 1991).

For purposes of developing design supports, it is important to recognize that, as with

representations, designers have a wide variety of methods with which to achieve their tasks. No

doubt, selection of a particular method under any one set of conditions is driven by the designer's

awareness of alternative methods and his perception of their relative costs and benefits. This does

not imply that formal tradeoff analyses of methods either are the norm (they are not) or should be

21



(they need not). Rather, the key insight is that a support system which understands that designers
can accomplish tasks in several ways can help generate and evaluate methods for the designer's
consideration that appear to be "missing" as he works toward a goal.

Use of Representation in Design

Whether applying a particular method or not, designers spend a great deal of time using
representations of the artifact to accomplish the tasks in Figure 4. A representation or model is
defined as a partial reproduction of the attributes of an object.2 Designers use representations to

gain insights into properties of the not-yet-completed artifact.

Models vary along several dimensions. Those of particular interest in design are shown in
Figure 5 grouped into three categories. The first category reflects the modeling activity. It
includes properties related to why a model might be built, the object and attribute(s) of concern,
and the beneficiary of the activity. The model user may be the designer himself as he tries to
understand the nature of the problem, evaluate his ideas, etc. Models are also used to describe
ideas or actual functionality to colleagues and customers. Similarly, computers and numerical
control machines "use" models to predict artifact properties or control factory processes.

The second category includes the abstraction and aggregation dimensions discussed in
connection with Figure 3. The most commonly used representations in design capture artifacts at
various combinations of these two dimensions -- requirements documents, sketches, functional

models, equations, detailed engineering drawings, mockups, production versions of the product,
etc.

The final category focuses on properties of the model itself. Models derive from concepts
and techniques in different disciplines. They also vary in their physical similarity and precision in
detail to the artifact -- a rough block diagram of how a system component might function is an
abstract, low precision model. In contrast, a manufacturing prototype for the same component is

both concrete and fully detailed.

2 Note that "object" is intentionally a very broad concept here, meant to indicate any type of entity in the design
world. It certainly applies to the artifact. It also applies, however, to the design process (tasks, assignments,
schedule), collateral processes that the designer must consider (production, testing, customer support, etc.), and
methods and tools that the designer may need to construct (e.g., a simulator). Each of these objects can be
captured at various levels of abstraction and aggregation, with more or less precision, more or less expressiveness,
in formal and informal ways, etc.

22



PROPERTIES RELATED TO MODELING ACTIVITY

Purpose of Model Description, idea generation, evaluation, specification

Object of Interest Artifact, design tool, design process, production process...

Attribute(s) of Interest Basic (tolerance, materials) to emergent (reliability, usability, safety)

Primary User Designer himself, colleague, customer, user, draftsman, computer,
numerical control machine...

PROPERTIES OF THE ARTIFACT BEING MODELED

Level of Abstraction Purpose, function and form

Level of Aggregation System, subsystem, component, part...

PROPERTIES OF MODELS

Disciplinary Origins Electrical, mechanical, chemical, software, behavioral, social...

Form similarity Abstract to concrete

Precision Coarse (rough or sketchy) to detailed

Expressiveness Number of attributes and interrelationships
that are represented

Formality Informal (e.g., sketching), semi-formal (e.g., diagramming)

to formal (basis in mathematics & logic)

Code Natural language, symbolic, spatial

Medium Text, speech, graphic, video, 3-dimensional (virtual, paper, foam
core,...)

Machine Processability Low (e.g., text) to high (e.g., equations)

Human Understandability Low (machine instructions) to high (text and graphics)

Figure 5. Artifact representations vary along several dimensions.

23



Expressiveness refers to the variety and interconnectedness of attributes that are captured

in the model. Most models are relatively low in expressiveness, as they portray an artifact from a
single perspective. We will return to this aspect of models in particular as it relates to functional

demands on the designer.

Formality refers to whether the model emerges from a system of primitives and combining

operations or from a more heuristic basis. Formal models, like equations, have a mathematical or

logical basis and are amenable to machine processing. Models such as operational sequence

diagrams and circuit diagrams are semi-formal insofar as they derive from systematic, but heuristic

bases. Sketches are informal models.

Finally, models can be prepared in various codes (e.g., natural language, electrical

symbols, numbers, etc.) and media (e.g., paper, computer display, speech at a design meeting).
These properties plus their basis in formal systems of logic and mathematics make a given model

more or less amenable to machine and human understanding.

Clearly, models are essential to design. They capture relationships among attributes,

thereby allowing the designer to explore implications of design cdioices as well as discover

unstated goals and constraints. They support the designer's apprehension of the problem and

offload memory by externalizing these relationships (Buur & Andreasen, 1989). In this role,

models enhance communication among people who contribute to design. Models also enable
product evaluation, serve as the record of design decisions, and help maintain coherence within
the design (Gero, 1990; Maher, 1990).

All models, however, are inherently limited in four ways which impose different types of

functional demands on the designer. First, any one representation can capture only a small
fraction of the pertinent attributes and interrelationships, i.e., "expressiveness" of the majority of

representations is low relative to the artifact itself. Thus, the designer must access several
different models to obtain an overall understanding of the design-state (trying to "apprehend the
elephant" from many highly specialized views). From a practical perspective, only a few
representations can be viewed simultaneously with contemporary display surfaces. Consequently,
low expressiveness per model also induces much swapping in and out of views.

Second, most representations are static and nonexecutable. The designer must mentally
simulate the behavior of the design solution, a task which suffers from the limited capacity of
human memory (Goel & Pirolli, 1989; Zachary, 1986).

24



Third, models possess properties that do not belong to the artifact and which are irrelevant

to the purpose of modeling. For example, a mockup may match the structural properties of an

actual product, but induce task procedures that will not be required in the final product. Thus, the

designer must know to ignore irrelevant features of representations, a particularly difficult task

when the representation is from a discipline other than one's own (Buur & Andreasen, 1989).

This relates to the last demand.

The types of representation and languages for creating and manipulating models are

practically boundless. Most are discipline-specific. Moreover, having emerged during the "craft

stage" of their parent disciplines, most representations have no formal foundation in logic or

mathematics (Webster, 1988). This property makes principled conversion of one representation

into another tricky (Rinderle et al., 1989). Since translation is a problem, effective designers must

be fluent in several representational languages (Eder, 1988; Meister, 1989). If the designer is

unfamiliar with or does not value the concepts, data, methods, and design types from another
discipline, two problems emerge. He is often cut off from a stock of ready-made and proven

solutions that could be adapted to the problem at hand (Smith & Browne, in press). Also, if he

creates representations at all, chances are they will be inappropriate (Lintz et al., 1971; Meister &
Fan', 1967).

Working with multiple representations or "views" of the same object induces several

demands for information management (Goel & Pirolli, 1989; Guindon, 1992). For instance, when

the designer edits a system element in one view (e.g., structural), updates are invariably required

in other views (e.g., kinematics, behavioral) of the same element. This is due to the systemic

character of designed artifacts. This effect emphasizes the need for dependency tracking, version

control, and change control, issues that have received a great deal of attention in engineering

information systems in terms of storage requirements, tagging, security and other artifact-related

matters (Linn & Winner, 1986; Roussopoulos et al., 1991; Salzberg & Watkins, 1990; Winner et

al., 1988). We only add here that they suggest support requirements for the designer as well.

SUMMARY

Design is a complex goal-oriented activity that resolves problems which, by their nature,
involve many conditions and stakeholders. Designers include a variety of individuals and groups

who affect the form and function of the system in direct and indirect ways. This characteristic

25



introduces needs to collaborate and share information, processes which run into difficulties due
the multi-disciplinary knowledge required.

Demands on individuals derive from uncertainty associated with what the problem to solve
is, who will judge the eventual solution, and along what criteria they will base their judgments.
Requirements and criteria for success tend to shift; the interdependencies among attributes of the

artifact are complex. To cope with these complexities, designers must be fluent in a wide variety

of methods and representational schemes with roots in different disciplines. Each method and

representation tends to support only a narrow portion of the overall effort. Coupled with the

artifact's emergence in stages, these characteristics force the designer to shift back and forth
among them to make progress. Each shift potentially suspends a partially completed task, thereby

introducing substantial task management problems.

This review of characteristics of design is relatively brief, and for more extensive

coverage, readers are encouraged to explore the wealth of available literature on design (cf. Bruns

& Gerhart, 1988). Traditional engineering (Dixon, 1966; Finger & Dixon, 1989a, 1989b) and
architecture (Broadbent, 1988) have especially rich literature.

26



INFORMATION ACCESS AND UTILIZATION

The above characterization of design suggests that there is considerable variability among
the types of problem faced in design. Since supports should match the need, this might be
discouraging to those seeking to improve the design process -- who exactly does one support and
how to assure improvement?

Fortunately, there is a common denominator. Across all designers, tasks, and methods of
performance is the access and use of different types of information (Boff, 1987a; Rouse, 1986,
1987a). Access refers to activities that produce an object from the design information

environment for subsequent use. Utilization refers to operations performed on or with objects to
answer a variety of questions about the not yet finished artifact. "Will it be strong enough?"
"What does or will the product look like?" "Why does performance deviate from expectations?"

"How do users react to it?"

We focused on this general need in order to develop supports that would have broad
appeal and, thus, a potentially broad impact on design. The following discussion examines
information access and utilization in design, beginning with a characterization of the information

world.

INFORMATION WORLD

Figure 6 depicts the world of design information. By any measure, this world contains a
vast collection of time-varying data that are captured in numerous formats and media, distributed
across organizations, and often specialized by discipline or problem. At the center are the
designer's ideas. Around these ideas, information can be categorized into that which serves as
input to the design process, that which is generated by the process, and output information that

results from the process.

Input information includes both system-specific information such as marketing studies,

system requirements, design rules, and management information about tasking, resources and
people. It also includes a potentially massive amount of system independent information such as
technology, past designs, and scientific data. Information generated includes sketches, diagrams,
and system-specific models; analyses and results; and design documentation. Outputs include
engineering drawings and parts lists; manufacturing plans for hardware and software; and design

27



artifacts, i.e., physical encodings of information. For our purposes, we decomposed this

information world into four types of entity: artifacts, methods, tools, and adjunct information.

Figure 6. The designer's world contains a varety of types and sources of information.

Artifacts

Artifacts are complex abstractions composed of requirements statements, representations

of function (e.g., I/O representations, computer models) and representations of form (e.g.,

drawings, mockups, prototypes). These data are expressed at several levels of aggregation (see

Figure 3). Each representation captures a subset of attributes and values for these attributes.

Values may reflect requirements and criteria, predictions based on modeling exercises, or

28



measurements from experimental tests. Attribute values can also be expressed as deviations from

expected or desired states.

Artifacts also contain identification information such as a name, revision number, author,
owner, and patent number. They contain annotations -- descriptions, explanationw., critiques, test
results. Constituent elements bear several types of relationships with one another, which also are
part of the artifact description. Relationships include composition (A consists-of B; B is-part-of
A), cross-representation (A transform from/to B), and utility (A uses B; B is-used-by A) (Linn &

Winner, 1986).

Both nascent and existing artifacts can be included as members in the overall class. The
principal distinction between nascent and existing artifacts is in their completion status, not their
informational structure. Furthermore, our including both types of artifact under one class reflects
our belief that access and utilization problems with present and past design are isomorphic.

Methods

A method refers to a combination of rules that describe preferred, default or mandatory
operations that achieve a design task. Methods vary in their breadth of application from very
general (e.g., systems engineering, spiral development) to specialized and narrow (e.g., particular
analysis techniques). Usually the broader the method, the more likely its individual steps
decompose into other methods. Also, methods may specify the use of particular tools and
resources per step to produce specific outputs.

In any particular instantiation of a support system, the range of available methods may
range from few to many. A broad range would include methods for requirements definition,
functional synthesis, form synthesis, functional modeling and model processing, form prototyping,
test and analysis. It would also include approaches to data analysis, information management
(editing, storing, linking...) and design process management (planning, scheduling, monitoring).
A narrow support system is also feasible in which only one or a few methods are represented.

Tools and Resources

Tools are manual or computer-based entities, plus resources, that enable execution of one
or more steps in a method. Designers retrieve, modify or construct tools to facilitate development
of the primary artifact. The methods that they support include representation (drawing, modeling,

29



prototyping), measurement, analysis, management of the design process (scheduling and resource
allocation) and management of design information. Examples of design tools are drawing

packages, modeling and computation packages, and prototype development packages. They also
include general purpose and administrative supports such as spreadsheets and database managers.

Tools often have particular disciplinary roots and are packaged with more or less usable

information about their conceptual basis, instructions in use, and resource requirements.

There is a close correspondence between artifacts and tools. Some tools are

reproductions of the artifact at some level of fidelity. Also, in terms of information structure,
tools and artifacts may be isomorphic -- tools are composed of subsystems and modules, are
driven by requirements, have an integration status, and so on. Mloreover, as noted earlier,

designers' activities that apply to artifacts also apply to tools. We separated tools from artifacts in
recognition of the difference between expending project resources on the design of a tool versus

on the design of the primary artifact.

Adjunct Information

The final class includes the vast store of additional information that designers may use.
This includes requirements statements and descriptions of operational need; information about

past designs with similar requirements, functionality or form; scientific and technical principles,
laws, models, and data; company practices, industry standards, regulations, and guidelines; and

sources for these data, including human sources. Most of these data are independent of the

particular system under design.

Support information includes descriptions of the current project and past projects from a
resources and management viewpoint. Elements include tasking, schedules, resources and their

allocation, authority relationships, and revisions of these items across the project. Designers

access these elements from past projects and the current project in order to adopt particular
management strategies or assess efficiency of particular approaches.

For our purposes, it was useful to conceptualize the information world as though it were a
massive centralized database. Clearly, this does not match reality. The information world is

actually composed of many "data islands" of provincial databases and file systems (Rangan &
Fulton, 1991). Some islands are accessible electronically, most are not. For developing support

requirements, however, we were more concerned with overcoming conceptual barriers to access

and use of the above objects than with present-day physical barriers.

30



METHODS OF ACCESS AND UTILIZATION

To obtain items from the above information world, the designer generally has at least three

alternative means which can be applied to three primary sources. Figure 7 illustrates these

relationships in terms of nine alternative access methods. Cell entries exemplify the types of task.

The designer can retrieve an existing object and use it for the new application, based

perhaps on a correspondence between the new situation and situations he has experienced in the

past (Chandrasakaran, 1990; Klein, 1987; Maher, 1990). The designer may retrieve and modify

an object to suit present needs. This alternative induces the related need to access appropriate

tools and information about the tools (e.g., user's manual) for such modifications. Finally, the
designer can construct new information, perhaps by using a tool. Construction is more or less

complicated depending on the type of object. For example, a sketch for a new system component

may require only paper and pencil, whereas a precise geometric rendering may require
sophisticated CAD tools.

Three primary sources of information are also depicted in Figure 7. Human judgment

tends to be the preferred source (Rouse & Cody, 1989b). Designers satisfy most of their

information requirements simply by recalling their own experiences, asking colleagues and talking
with experts (Allen, 1977; Rouse & Cody, 1989b). Hence, the upper left-hand cell in Figure 7

represents a very popular means for producing needed information. The second source is the

archives, which include handbooks, textbooks, journals, magazines, catalogs, company
publications, and project databases. With the possible exception of trade magazines, designers

access the archives only when human judgment appears to be inadequate (Gerstberger & Allen,

1968).

The third source of information is models. There are three types of model -- experiential,

experimental, and analytical. When designers access a previous system, and the experience

associated with it, as a baseline against which the new design is referenced, they are using an

experiential model. This baseline is a model in the sense that at least a subset of its attributes are

predicted to be relevant to the new design requirements. Of course, this prediction can be wrong

if a poor baseline is chosen (Boff, 1987a).

Use of an experimental model involves producing the artifact and its conditions of use to
some level of fidelity. In the case of human-machine systems, the conditions include subjects who

31



represent the eventual users. This is a model in the sense that the artifact, subjects and conditions
provide a model of the future.

METHOD OF ACCESS
SOURCE OF

INFORMATION
Retrieve Existing Modify Existing Construct

Object for New Use Object for New Use New Object

Adopt decision from pilor case Anlogize from previous case Reason from pritciples

Human Judgment
Ask colleagues for past examples Brainstorm with colleague based Guess

on his experience

Archives Conduct literature review; adopt Modify object recalled from Compose new paper regardingobject from reports literature o4ect

Experiential Adopt a baseline Adapt a baseline

Re-use procedures and conditiora Modify procedures and condiins Develop and execute new study tModels Experimental from prior study from prior study measure attribute

Analytical Re-use existing model from simila Retrieve and adapt existing mode Develop new model with
system with approprate tools appropriate tools

Figure 7. Designers have several alternative methods and sources for accessing information.

Analytical models are typically embedded in computational tools. Use of these tools

involves describing relationships at some level of abstraction (e.g., functional input-output

relationships, geometric relationships in structural drawings). Parameters within the

representation are then chosen, inputs are specified, and outputs computed.

The choice among these alternative sources determines which information will influence

the designer's thinking and decisions, and which will not. For example, if the designer chooses to

use personal judgment over another source, then that second source is blocked from influencing

his design decisions. To understand why some information is accessed and other information is

not, we need to examine the value of information in design.

32



THE VALUE OF INFORMATION

"Value of information" can be a rather elusive construct (O'Reilly, 1982; Rouse, 1986a).

On the one hand, the issue seems straightforward. Value is what one is willing to pay in money or

effort. This definition is reasonable for some purposes. However, it is not directly useful for

developing support system requirements. To be useful, the concept of value must be defined in

terms of benefits the desig -r experiences from using the information and the costs associated
with acquiring it. In this regard, it is useful to think of design as a decision making process under

conditions of uncertainty (Hazelrigg, 1988). Certainly this image corresponds with the

characterization provided earlier in this report.

Benefits of Information

One benefit of having information related to an issue is that it reduces uncertainty. This

may occur when the user is informed of something new or reminded of something forgotten.

Uncertainty may also be reduced if the need is to have "information about information," as was
discussed earlier in regard to recursion in design.

Designers may be uncertain about a variety of topics, as is illustrated by Figure 8. It

shows 26 types of question, grouped into four classes, that we derived from an extensive

observational study of a group that was involved in the early stages of designing a new aircraft
cockpit (Sewell, 1990). Some questions focus on requirements, others on ideas for satisfying

requirements, and others involve the artifact as it takes form and is evaluated and fielded. Our

expectation is that information which addresses these questions and, thereby, reduces the
designer's uncertainty would be perceived as beneficial.

Uncertainty reduction is necessary but may not be sufficient for the designer to perceive

the benefits of some class of information. This assessment is also governed by his belief about the

relative importance of the issue over which there is uncertainty (Gemunden, 1985). Issues in

design are not all equally important. The payoff for being "correct" can range from trivial to

enormous and the risk of being wrong can range from none to catastrophic. Whether right or
wrong in his beliefs about the importance of an issue, the designer makes this assessment and,

thereby, determines whether information will be useful or not. Our expectation is that failures of

cross-disciplinary information transfer can be traced to designers in the "receiver" discipline

discounting the importance of issues from the "sender" discipline (Lintz et al., 1971; Meister &

Farr, 1967).

33



WHAT....?

1. What were the problems with the past design?
2. What were the requirements for the past design?
3. What are the requirements for the new design?
4. What new technologies are available?
5. What off-the-shelf components are available?
6. What are the capabilities of these components?
7. What are the performance limitations of...?
8. What is the current state of the design?

Configuration, function allocation, physical form, schedule status...
9. What solutions to problem X are possible?

WHAT IF....?

10. What will be the impact of function/form on...?
Performance, operability, supportability, schedule, cost....

11. What criteria will be affected by function/form?
12. What effect will this idea have on compatibility with the current design configuration?
13. What effect will this idea have on compliance with design requirements?
14. What will the design support system do if I do...?

HOW .... ?

15. How did the past design function?
16. How can new technology be used?
17. How can available off-the-shelf components be used?
18. How can a particular "what if" question be answered?
19. How can a particular "why" question be answered?
20. How can the state of the design be updated?
21. How can the design support system be used?

* WHY .... ?

22. Why did problems occur with past designs?
23. Why are the requirements for the new design as specified?
24. Why are the results of a "what if" question other than hoped?
25. Why did the state of the design change?
26. Why did the design support system respond as it did?

Figure 8. Uncertainty in design is associated with several issues.

34



Figure 9 summarizes these observations about benefits in terms of a "perceived risk

space." The axes show the designer's uncertainty associated with an issue and his beliefs about

the importance (desirability) of the consequence. The corners of the space are given concrete

meaning with examples. Greatest uncertainty (probability = .5) is associated with events along the

central horizontal axis; the most extreme consequences occur at the left and right boundaries of

the space. The two darkened regions represent situations in which the designer perceives the

greatest degree of risk; this perception diminishes with distance from these regions.3

Certainty Death & Sun will use
P= .99999 Taxes again tomorrow

LIKELIHOOD
OF p -. 5 ..

CONSEQUENCE

Unlikely Hit by Winning the
p < .00000... lighlning lottery

Undesirable Neutral Desirable

Greater loss Greater payoff

DESIRABILITY OF CONSEQUENCE

Figure 9. Perceived risk is a function of uncertainty and importance of the consequences.

3 Although shown as symmetric, the region associated with uncertain/undesirable events is likely to draw more of
the designer's attention than the uncertain/desirable region.

35



The designer realizes benefits with movement from one location to another in this space,

and information is the vehicle for doing so. We hypothesize that, from a given starting point, the

direction and magnitude of change afforded by a given class of information are directly related

with the designer's perception of benefit. Information that reduces uncertainty will be valued

more than that which increases uncertainty. 4 Moreover, movement toward greater certainty will

be valued more when the issue is associated with extreme consequences. Thus, equivalent shifts

in uncertainty at the extremes of the desirability axis will be seen as more beneficial than those in

neutral regions.

Costs of Information

The second component that determines the value of information are costs associated with

its access and use. Costs could be measured in terms of money, but in the present context, they

are more likely measured in terms of effort required to obtain, interpret and determine the

implications to design choices of a class of information. Thus, information can be such that it

reduces uncertainty and pertains to an issue that the designer believes to be important, but

nevertheless is not valued because it i.3 difficult to obtain or use (Boff, 1987a; Rouse, 1986).

Information may be difficult to obtain if it is not available through electronic means, is

proprietary to another group, is out of print, or has not yet become available. Information may be

difficult to use for several reasons. It may be expressed in a form that is inappropriate for design.

A typical example in design occurs when the designer receives qualitative information when

quantitative information was sought. Information can also be difficult to use if its disciplinary

origins are different from the designer's and contains unfamiliar concepts and jargon.

For some information, it may be possible for the designer to transform it so as to make it

useful. However, the effort needed to make this transformation is likely to be perceived as greater

than the benefit to be obtained, especially if the issue is not perceived to be important.

Unfortunately, designers perceive much of the research literature suffering from these problems

(Rouse, 1986).

4 In the early stages of design, greater uncertainty in the form of having several feasible, rather than fewer,
candidate designs may actually be valued. To be consistent with the benefit space, the condition of having "too few
alternatives" might be seen as involving greater uncertainty about viable approaches that is the condition of having
several alternatives. As design proceeds, and deadlines approach, more (un-eliminated) alternatives are seen as
undesirable.

36



Figure 10 summarizes the four factors that are assumed to contribute to the perceived
value of information. Reduction of uncertainty and issue importance affect utility, whereas ease
of access and transformation requirements govern perceived usability. In turn, these two interim
dimensions control perceived value. As Figure 10 suggests, threshold values exist for both
usability and utility; below either of these levels, information will simply be discarded (Boff,
1990).

Hi

>1-"

a--4-wcn ;

Lo

Lo Hi
PERCEIVED UTILITY

Hi Hi I

140

-J /zo

Lo I-o

Lo Hi Lo Hi

TRANSFORMATION IMPORTANCE OF
REQUIREMENTS ISSUE

Figure 10. Perceived value of information is a function of perceived usability and utility.

37



The value of a given piece of information is not static. Value is inherently time-varying

because uncertainty changes as design choices are made. Figure 11 illustrates this notion.

Moving around the lower loop first, differences between his current knowledge state and goal

create uncertainty in the designer. The magnitude and specific properties of this gap lead to

consideration of what, if any, information is needed and how it might be obtained. Assuming

uncertainty exceeds some threshold, the designer chooses a means (Figure 7) and acts. He then

uses the information which changes his state of knowledge, presumably in the direction of the

knowledge goal and, thereby, reduces the size of the uncertainty gap.

It is always possible that new information will actually increase uncertainty, if not with the

issue at hand, with some related matter (Gemunden, 1985). In part, this accounts for the

apparently chaotic behavior that is seen in design. For instance, the designer may work on some

element of the solution until encountering implications for other elements. This realization

induces uncertainty, not about the partial solution necessarily, but about other design options and

commitments. This new state of uncertainty then triggers a "move" to some other level of

abstraction or aggregation, which is made manifest by the designer seeking new information.

Guindon (1992), Malhotra and his colleagues (1980), and Schon (1983) have reported

observations of designer behavior that are consistent with this interpretation. As when working

with multiple representations, abrupt shifts around the design space to chase down new

uncertainties creates a trail of partial solutions and suspended tasks which then must be managed.

KNOWLEDGE PRESSURE TO
GAP 4ADJUST GOAL

UNCERTAINTY PERCEIVED
GAP BENEFITS

AND COSTS
ACTIONS

TO ACCESS
KNOWLEDGE INFORMATION

STATE q
S~USE OF

INFORMATION

Figure 11. The value of information changes dynamically with feedback

38



The upper loop of Figure II suggests that, before acting, the designer evaluates the
potential benefits and costs associated with some class of information. The designer must expect
the information will reduce uncertainty, pertain to an important issue, be accessible and
transformable. (Rouse, 1986). Beyond these criteria, which seldom reduce the number of
alternatives to a single choice, other attributes such as access time and cost, perceived validity,
and disciplinary compatibility (i.e., concepts, jargon), can also affect the choice (Cody & Rouse,
1989). Furthermore, designers' selection criteria are likely to vary from one situation to another
(Rouse, 1986). For example, alternatives that a designer chooses when exploring what system
requirements mean are likely to be quite different from the options he chooses when trying to
confirm their interpretation with a particular stakeholder.

If costs are perceived to exceed benefits, the designer may switch to a lower-cost
approach. Alternatively, he may abandon the search, and instead reduce uncertainty by
discounting the knowledge goal (Gemunden, 1985; Lintz et al., 1971; Meister & Fan', 1967). As
commonly occurs with information that they consider to be discretionary, designers may conclude
that the trouble associated with getting information that is not readily available, in the proper
form, etc., is simply not worth the effort (Rouse, 1986). As alluded to earlier, for most design
issues, human judgment -- the designer's own or those of colleagues -- is perceived to yield the
best value in terms of the cost of access, ease of application and consequent benefits of
uncertainty reduction.

In summary, information requirements vary across design tasks. Designers evaluate
sources of information in terms of their potential to reduce uncertainty, apply to an important
concern, be accessible, and be in an appropriate form. As a result, the perceived value of a given
piece of information can range from indispensable to irrelevant, and this assessment varies over
time. For better or worse, the designer makes this judgment. The key lesson is that value is not
intrinsic to the information itself. It depends totally on the designer's situation, intentions and
perceptions -- value is in the eye of the beholder (Boff, 1988).

IMPLICATIONS FOR SUPPORT

The implications of this analysis for design support are threefold. First, designers access a
wide variety of information, and some classes more routinely than others. Routine items include
project-specific information such as requirements documents, artifact representations, and project
management data. At a minimum, a system that supports information access and use in general
should enable the user to access these highly valued items.

39



Second, to deliver relevant information beyond these items, the system needs several
pieces of data: what task is being performed (Figure 4) and what type of representation(s) is (are)
in use (Figure 5); what type of question is being asked and what type of answer is sought (Figure
8); and where in the abstraction/aggregation hierarchy (Figure 3) the current task is located.
Without these data, information returned by a system might be trivial at best and, more likely,
completely off target. This suggests that the support system must be told, or be capable of
inferring, what the designer is attempting to do in a very context-specific manner.

Finally, to encourage the designer's consideration of a particular class of information, the
system must increase the perceived benefits associated with its use and/or reduce the perceived

costs with obtaining and applying it (Figure 10). Perceived benefits can be enhanced by making
apparent to the designer how the information can reduce uncertainty about the question he
currently is addressing. It is also possible to increase perceived benefits by suggesting how his
failing to consider the information increases his risk of a bad decision (Figure 9). Nonspecific

warnings such as "failure to consider this information could lead to problems," however, are
unlikely to meet with success -- the system must help the designer' determine the implications for

his particular question or decision.

Perceived costs can be reduced in several ways, all of which presuppose that the system
will have access to information. In response to the designer's specific requests, the system could

decrease perceived costs by executing appropriate protocols to retrieve the desired information.
The system could also help the designer formulate questions regarding the design issue at hand
that he may not otherwise ask due to his background or inclinations. Along with this support, the
system could help him express information needs in a manner that is compatible with the available
sources. At an even more sophisticated level, the system could identify and retrieve information

in anticipation of the designer's needs. This service would require the system to be capable of
predicting what the designer will do next based on his present context, task, question, etc.
Beyond identifying and retrieving items, perceived costs associated with transforming information
might also be reduced. Transformations could be carried out at the user's command, in accord to

stored preferences, or in anticipation of user needs.

40



SYSTEM REQUIREMENTS ANALYSIS

The above implications for support are too general to serve as system requirements. A
more detailed analysis is needed if operationally meaningful specifications are to emerge. Toward
this end, we utilized an analysis method that we have found useful for designing information
systems for applications in command and control (Rouse & Rouse, 1983), nuclear power (Rouse
et al., 1984), and manufacturing (Rouse, 1988). The methodology begins by making explicit an
overall philosophy for supporting humans in complex systems. Along with the above analysis of
information access and utilization, this philosophy helps to define support system goals. Given
goals, the method then identifies the functional requirements to achieve them.

SUPPORT PHILOSOPHY

Traditional approaches to developing support systems for designers can be described as
artifact-driven. This involves analyzing the artifact -- what forms it can take and how it evolves
from one representation to the next (e.g., requirements to functional spec, spec to drawings, etc.).
Once the representations are understood, one concentrates on means for increasing the speed and
efficiency of the evolution. Moreover, with advancements in automation, the design goal is often
to replace the human skill, judgment and even creativity where possible (cf. Finger & Dixon,
1989a, 1989b). Resulting tools are then presented to users with the hope that they will be useful
and that design outcomes will improve.

Clearly, developers who adopt an artifact-driven approach want to build products that
designers value and use. The approach, however, can result in supports that devalue the human's
contribution, do not address the need, are hard to use, or are not viable for economic or
organizational reasons.

To avoid these difficulties, we adopted a human-centered approach to design support (cf.
Rouse, 1991). The foundation for this approach is a belief that people, not their tools nor the tool
designer, are responsible for achieving system objectives. Put simply, people have to "be in
charge." This simple philosophy leads to the conclusion that the goal of a support system is not to
achieve the human user's objectives for him. Rather, the purpose is to enhance the user's abilities
and overcome his limitations so that he can achieve the objectives himself. The philosophy applies

41



equally well to people who design cockpits for pilots as it does to people who design supports for

other designers.

To some, this may seem to be a minor semantic distinction. However, there are major

differences between supports that derive from artifact-driven and human-centered approaches.

Focusing directly on the artifact, some would conclude from the above analysis of design problem

solving that the designer is the source of the problem. The conclusion might be to remove the

designer from the process where possible and create autonomous systems that will "do design"

(Chandrasakaran, 1990>, Mostow, 1985; Newsome, Spillers & Finger, 1989; Steier, 1990). Such

systems would interact with human users only to the extent that they require inputs and occasional

adjustment to keep them on track. In this scheme, the human designer is relegated to monitoring

progress and making adjustments. "Support" equates to reducing human discretion toward the

goal of better products. Certainly, this vision of designing is far into the future, but imagines the

human serving the machine rather than vice versa.

The alternative, human-centered vision is of a machine subservient to the designer who

solves the problem and creates the artifact. The designer always maintains authority to reject,

override, or modify suggestions or actions taken by the support system, even at the risk of a

poorer product. The reason is that, while it is imaginable, and in some cases inevitable, that

automation will match or even surpass human capabilities in specific problem-solving tasks, it is

not imaginable that automation will ever be held legally, ethically, or socially responsible for its

actions. Thus, regardless of the level of automation, people will remain responsible for the design

decisions that they make (Rouse, 1991).

In sum, the human-centered philosophy suggests how responsibilities should be allocated

between designer and support system. The goal of design is to specify artifacts whose functions

and attributes satisfy requirements and criteria held by stakeholders in the effort. The role of the

designer is to focus on stakeholders' concerns and the artifact. The role of the support system is

not to optimize the artifact. Its role is to improve the designer. The system should make the

designer aware of pertinent information, aware of the effects of his design decisions, and

confident about options he selects. It should help him to avoid errors in approaches and tools of

his choosing, and to detect artifact violations that he can choose to ignore or address. This image

of support helps to establish system goals, to which we now turn.

42



SYSTEM GOALS

There are generally several ways to achieve a set of functional requirements. Decisions

made between functionally equivalent alternatives often are based on philosophical design goals.

Such goals indicate a direction to be followed as opposed to strict criteria to be met. Based on

our analysis of information access and utilization in design, the following classes of support goals

were identified.

Goals Related to Access

"* Match the types of information sought to the user's task, context, personal preferences and
intentions.

"* Help the user to formulate an appropriate and complete set of questions regarding the design
issue at hand.

"* Help the user to express information needs in a manner that is compatible with sources.

"* Adapt the amount of information that the user must supply to the system to the degree of
system output desired. (context responsive; personalized; intent responsive); therefore, keep
up-to-date with designer's mental model of his circumstances.

"* Enhance the likelihood that the user is aware of the full range of relevant information to his
current circumstances.

"* Answer the user's specific questions regardless of the level at which they are asked.

"* Base responses to user questions and requests on as broad a knowledge base as possible.

"* Anticipate the user's information needs.

"* Provide tutoring in how to access information sources, as requested by the user.

Goals Related to Utilization

"* Enhance the user's ability to understand information from disciplines other than his own.

"* Support use of methodologies for applying information to design decisions.

"* Help the user to determine the implications of information to his particular design problem or
question.

"* Enhance the likelihood that system design choices will reflect consideration of relevant
information that is available to the system.

"* To promote understanding, transform information to match the user's preferences, style, or
discipline (adaptation to the user).

43



" To promote understanding and use of relevant information, teach the user about concepts,
principles, methods, and data from the domain (adaptation of the user).

" Support integrating information into the design database.

General System Goals

"* Allow the user to set the support system's level of autonomy on a task by task basis.

"* Ensure non-redundant interaction between the user and system, i.e., provide support based on
stored information about the design state and the user's intentions.

"* Enhance cooperative work among distributed and autonomous design team members.

"* Accommodate as many different types of user as possible.

"* Impose minimal administrative burden on users and organizations with regard to installing,
maintaining and using the system.

METHOD TO IDENTIFY SYSTEM FUNCTIONS

What should the support system do to achieve these goals? This section summarizes the
methodology we used to answer this question.5 It is important to note that the methodology does

not identify how supports might be realized. Rather, it defines functional requirements based

solely on perceived need. Implementation considerations for one particular approach are covered

in the next section of this report.

Step 1: Define Tasks. This step is concerned with identifying the tasks to be supported. Based

on our analysis of design, we adopted the 12 tasks shown in Figure 4 as the targets for support,
each of which could occur at various levels of aggregation. We also identified 36 types of object

to which these tasks apply. Figure 12 shows these objects organized according to level of

abstraction. The meaning of these objects are quite straightforward, with one exception. Both
the singular and plural of drawings of form, model of functionality, and prototype appear in

these lists. The plural refers to retrieving relevant candidates, while the singular refers to

creating a candidate

Step 2: Map to General Tasks. This step involved mapping the design-specific tasks to a set of

13 domain-independent tasks that characterize human interaction in complex systems. These

general tasks, and 17 associated forms of support, emerged from an extensive analysis of over

I The methodology is elaborated more fully in Rouse (1991).

44



100 support systems (Rouse & Rouse, 1983). Thus, the general tasks provide an intervening

mechanism for linking the design-specific tasks in Step 1 to potential forms of support.

PURPOSE FUNCTION FORM

Requirements for past designs Functionality of past designs Forms of past designs
Information on operational need Information on functions Information on forms
Requirements for current design Explanations of functions Explanations of form
Past designs (requirements) Past designs (functions) Past design (forms)
Performance attributes and criteria Off-the-shelf functions Off-the-shelf forms

Input/output representations Drawing tools/packages
Relevant input/output Drawings of form

representations Drawings of forms
Modeling tools/packages Prototyping tools/packages
Model of functionality Prototype
Models of functionality Prototypes/mockups
Model's variables Off-the-shelf prototypes
Model's predictions Experimental variables
Deviations of predicted Data collection plan

performance Performance
Performance data
Measured performance
Deviations of measured

performance

Figure 12. Primary objects in design can be classified into three types

Two analysts independently performed the mapping from each of the 12 design tasks to

the 13 general tasks. Results were then compared and consolidated, yielding 64 links, or an
average of somewhat over 5 links per design task. Each link was annotated with the reason for

the link and a design-specific interpretation of the connection. This set of 64 design-specific
instances of the general tasks served as the input to the next step.

Step 3: Map to Limitations. The third step considered limitations that designers are likely to

exhibit in performing the 64 tasks. Limitations can be characterized in more than one way. Sage

(1981), Silverman (1990) and Zachary (1986) have considered psychological limitations
associated with decision making and problem solving in complex systems. The difficulty with

tabulations of psychological limitations for developing support systems is that they are very

45



general. With a little stretching, it was easy to imagine mapping each of the 64 tasks to all of the
psychological limitations. Such a result was not considered useful. We found it more useful to

think in terms of task limitations that were tailored to the context of interest -- information access
and utilization that support each of the 64 design tasks. Figure 12 presents ten limitations that we
considered, five related to access and five related to utilization.

We reviewed each of the 64 tasks to determine whether or not each of the 10 limitations in
Figure 13 was likely to affect the task. We assumed a journeyman designer and concluded that
the "why" and "when" limitations in Figure 13 would not be relevant. Applying each of the

remaining 7 limitations to the 64 tasks resulted in 213 task-limitation pairs that represented

potential support requirements.

Step 4: Requirements Analysis. We then analyzed each of the 213 requirements to determine in a
very design-specific manner what needed to be done to overcome the limitation. This was
accomplished by reviewing each of the 213 in terms of the nature of the limitation (Figure 13),
general task involved, and design task involved (Figure 4). Results from this analysis were used
to create a computer-readable database describing the requirements to overcome each relevant
combination of limitation, general task, and design task.

Step 5: Clustering Requirments. The 213 requirements, including the associated context-

specific interpretations, were sorted into clusters with common limitations and general task

attributes. This type of sorting was needed in order to map to the aforementioned list of support
concepts which is indexed by general tasks. Limitations were used as a second sorting attribute
because the interpretation of support concepts is influenced by the nature of the limitation that the
support is to help overcome. This process resulted in 43 clusters of requirements which served as
input to the next step.

Step 6: Map to Support Concepts. Each of the 43 clusters was then mapped to one or more of
17 general support concepts (see Appendix A; also see Rouse, (1991) for the most recent

exposition of these concepts). This mapping was based on the general task associated with the
cluster. Each potential support concept was then interpreted within the context of the limitation
associated with the cluster, as well as the design tasks (Figure 4) with links to this cluster.

46



ACCESS LIMITATIONS:

Not knowing about object
Not knowing where to get object
Not knowing how to get object
Not knowing why to get object
Not being able to get object

USE LIMITATIONS:

Not knowing what to do
Not knowing when to do it
Not knowing why to do it
Not knowing how to do it
Not being able to do it

Figure 13. Designer's potential limitations apply to both access and use of information.

We found it necessary to develop a structured vocabulary for expressing supports to

perform this analysis. Each instance of support was composed of four types of terms:

"* Support verb Actions of the information system to support the designer.

* Designer verb Actions by the designer that are enhanced by the support system's

actions.

"* Primary object Object of the designer's actions (Figure 12)

"* Modifying object Noun plus preposition that modifies a primary object

Figures 14 and 15 show the specific terms and definitions for support verbs and designer

verbs, respectively, that we used. After several iterations, 613 instances of support resulted. The

complete list appears in Appendix B, organized according to support system action. An example

entry is: (Execute procedure to) (access) (drawing tools/packages).

It is interesting to note that with 6 support verbs, 10 designer verbs, 8 modifying objects,

and 36 primary objects, there were over 17,000 possible combinations. The 613 actual instances

of support account for roughly 3.5% of these alternatives. Thus, the results of the analysis

represent a much more structured and focused conclusion than a purely combinatorial tour de

force would indicate.

47



Search Use attributes or labels to identify and locate objects.

Execute Perform procedures to access, construct, evaluate, measure, obtain, run,
and select objects.

Indicate Display variables, relevant procedures,, necessary activities, etc.

Transform Modify, filter, and highlight observed or computed variables.

Explain Interpret procedures, measures, variables, explanations, transform, etc.

Tutor Coach in the use of procedures to access, construct, evaluate etc.

Figure 14. The support system performs six major operations.

Access Open and manipulate an artifact representation or tool.

Construct Create or modify an entity; meant to include construction of artifacts and
tools as well as generation of methods and information (e.g., explanations).

Evaluate Assess attributes of an entity through reasoning, prediction, or measurement;
includes notions of c •mparing objects with one another or requirements.

Identify Determine the existence of and label for an entity.

Locate Determine whereabouts of an entity.

Measure Determine performance through observation.

Monitor Observe processing or execution of methods and tools.

Obtain Acquire custody of an entity including artifacts, tools, and information about
these objects.

Run Execute a functional model to generate information.

Select Choose among alternatives.

Figure 15. Designers perform ten operations in accessing and using information.

48



Step 7: Cluster Suport Concepts and Compose R&quirements Statements. Finally, each of the
613 supports was annotated with whether it was associated with inputs or outputs from a support
system. The data base was then sorted along this dimension, and the resulting clusters were used
to composed a consolidated list of 36 requirements.

To perform this step, we adopted a general framework described by Riley (1989) for
analyzing human-support system interactions. 6 Figure 16 depicts this framework. It shows the
information world, designer, and support system interact via three communication loops. In two
autonomous inner loops, the design world provides information independently to the designer and
support system, and both parties provide information back in the form of actions and procedures.
In an outer cooperative loop, the designer and support system interact with one another through
various interface mechanisms.

Focusing first on the designer, he receives inputs from the design world via artifact

representations, reports, tools, people, etc. (see Figure 6). He also receives input directly from
support system displays and indirectly by perceiving actions that the support system takes on the
design world. Based on this information, he infers the states of design world and support system,

and plans his next move according to his internal goals. The designer's outputs include changes to
.design entities (in either temporary or permanent store) and selections of functions of active tools,
including the support system.

The support system exhibits analogous activity. The lower path through the support
system input quadrant is devoted to sensing and interpreting changes that take place in the design
world; the upper path acts on information from or about the designer. This information is used to
plan actions that will support the designer according to a set of goals. In the output quadrant, the

support system acts on the design world, such as to retrieve information or run a model, and
constructs displays for the designer.

We grouped the 613 requirements for supporting information access and utilization

according to four main processing elements depicted in Figure 16: monitoring the designer,
monitoring the design world, acting on the design world and constructing displays for the
designer. Results from this final step of analysis are presented next.

6 The consolidated list of requirements which emerged from this step of the analysis can be achieved by a human-
based system, machine-based system, and various mixes of these two. The scheme shown in Figure 16 does not
presuppose a specific implementation.

49



DESIGN SUPPORT SYSTEM DESIGNER

MONITOR ._. RIEQUEST

rMONITOR DESIGN

Figure 16. The designer and support system interact with each other and independently on the
design information world.

CONSOLIDATED REQUIREMENTS

1.0 Monitoring the Designer

The f'6rst categoy of requirements for the support system is concerned with sensing and

interpreting the designer's actions. His actions include those directed at the design information
world as well as those issued directly to the support system (e.g., requests for processing or
explanation). A computer-based system might monitor the designer's behavior in surrogate form
by identifying which representations, tools, tool modes, information sources, etc., the designer
currently has active as well as the changes these entities exhibit at the hands of the designer.
Assuming that a means to interpret the designer's actions is available, the system could deduce
from changes in these entities what the designer is attempting to do. Interpretation of the
designer's activities serves to identify his goals, current task queue, possible errors and
misunderstandings. Outputs from the monitoring function guide the associate's support planning
process.

50



1.1 A system for supporting access and utilization of design information must be able to
monitor the designer's actions, or be able to construct a facsimile of his actions (e.g., from
information provided directly by designer), with respect to tools, artifacts and information
sources. Monitoring the designer's activities is necessary for interpreting his intentions
and, therefore, his information needs. In addition, monitoring the designer's activity
relative to a known method or tool enables detecting inconsistencies and anomalies that
may be indicative of inadequate, inappropriate, or incorrect application of the method or
tool.

1.2 The system must be able to identify knowledge and skill required to apply a method or use
a tool in order to support explanation, tutoring or augmenting the designer's performance.

1.3 The system must be able to identify tools the designer is using. Identification includes the
name, version, type, resource requirements and tool purpose. Identification enables
context-sensitive support in the forms of accessing needed resources for tool use,
checking for inappropriate use, explaining tool behavior to the designer, and taking the
initiative in applying tool functionality on behalf of the designer.

1.4 From information about the situation and the designer's actions, the support system must
be able to identify the active set of methods that characterize the designer's behavior.

1.5 For a given method, the system must be able to track steps that the designer has
completed, has suspended, and has not yet started. Also, it must be able to manage
information about suspended tasks and tasks not yet started in order to notify the designer
of incomplete tasks or, if capable, to take the initiative in completing the task(s) itself.

1.6 For a given method and information about designer's actions, the support system must be
able to monitor execution for inconsistencies to enable construction of appropriate
messages (e.g., queries about his intentions) to the designer.

2.0 Monitoring the Design Information World

This category of requirements specifies the support system's ability to track and explain

changes in the design information world, to evaluate entities (candidate designs, tools, test results,
information sources, etc.), and to select from among alternative entities according to rules. We

assume that the information world could be affected by many contributors who are distributed

organizationally and across time. Requirements in this category are independent of any one

designer's actions. To track and interpret design state changes, a support system must be able to

reason about abstractions such as "requirements," "criteria," and "specifications," and relate

changes in design representations to these concepts. It must also be capable of locating

information that pertains to these abstractions.

2.1 The support system must be able to identify the origin of requirements as explicitly given,
inferred, or discovered following design decisions.

2.2 For a given situation and set of candidate information sources about requirements,
function and form of a design, the system must be able to evaluate alternative information

51



sources and select the source that best matches the designer's needs. This capability
includes assessing the appropriateness of tools to tasks.

2.3 Given a representation of requirements to be achieved, the system must be able to
construct, evaluate and select explanations of the requirements for the current design and
past designs.

2.4 For a given artifact, the support system must be able to construct, evaluate and select
explanations of the artifact's functional and structural composition. This capability enables
the support system to explain or tutor the designer in why an artifact was designed in a
particular way and how it works.

2.5 For given requirements, resource commitments, and a candidate set of design alternatives,
the system must be able to evaluate functional and structural design representations for
inconsistencies, requirements violations, as well as stage of completeness (e.g., marking
requirements as "met," "in negotiation," "waived,"...). Given the evaluation, the system
must also be able to select the representations that best reflect the requirements. These
capabilities support notifying the designer of conflicts between requirements and system
state should he express an interest in such information.

2.6 Given a set of requirements and criteria, and results from modeling exercises or
experimental tests with the artifact, the support system must be able to determine
deviations of attribute values from expected values, and accept or reject the validity and
reliability of these values. The system must also be able to construct, evaluate and select
explanations of deviations between tested and expected attribute values.

2.7 The support system must be able to monitor the processing of tools in order to detect
computational anomalies and error conditions.

3.0 Acting on the Design Information World

The third set of requirements pertains to the system's capacity to manipulate the design
information world. Depending on its level of autonomy (see below under "mixed-initiative

systems) , these manipulations range from simple searching and information retrieval from on-line
bases, to assimilating information created by the designer into the artifact base, to actually
applying design methods and tools to change or elaborate the artifact (e.g., filling in design
details). The requirements also cover the planning process whereby the support system constructs
action plans for the designer's review and approval.

3.1 The support system must be able to take initiative on tasks it has the authority to do so as

a result of four types of triggering condition:

* direct designer command

* by recognizing the occurrence of specific situations that the designer has identified
a priori to require DA action

* by inferring the designer's intentions

52



by recognizing situations that, in past exchanges with the designer, resulted in the
support system action. Thus, the support system must be able to store previous
sessions with the designer and adapt its behavior based on prior experience.)

3.2 The system must be able to search the design information world for relevant entities based
on attribute values or by name, and establish their existence and location for potential
retrieval. Entities include artifacts, methods or procedures, tools and supporting
information. Having established existence and location, the system must be able to
retrieve or access the entity for use. Note, the remaining requirements in this section all
are specializations of this general statement.

3.3 The support system must be able to retrieve requirements information for the current and
past designs. In addition, it must support editing and reorganizing requirements as
incompleteness and ambiguity of the problem specification are reduced across the design
process.

3.4 The system must be able to retrieve representations of past designs based on attribute
values (e.g., "all designs that met requirement X") or label (e.g., the XMD 7401 helmet-
mounted display tube). For attribute searches, similarity may be based on requirements,
functionality, or structural properties. As with many of the operations in a mixed-initiative
system, this action merely delivers one or more candidate entities for subsequent
evaluation. Evaluation may then be conducted by the designer, by the support system or
cooperatively.

Retrieval will depend upon several operations. These include capabilities to formulate
searches, identify attributes and labels, locate objects, retrieve objects and not just pointers
to object, retrieve relevant related objects, and adjust the retrieval strategy based on user
evaluation of results.

3.5 The support system must be able to identify and retrieve methods for constructing artifact
representations, methods for developing explanations, and methods for evaluating entities.

3.6 Related to this, the system must be able to locate and access tools, plus the resources
necessary to use them (e.g., remote computing hardware), that are called out by methods.
Tool execution and management will depend on several capabilities. These include the
ability to estimate processing requirements, download tools, bind downloaded objects to
tools, check versions in and out, access the necessary resources for tool execution,
manage tool I/O and data transfer, and handle host-specific commands and quirks. We
assume that an actual system will operate within an engineering data environment that
enables these functions.

3.7 The support system must be able to apply tools autonomously to construct drawings,
models and prototypes of the artifac, at all levels of aggregation. In keeping with the
overall support philosophy, the d ,..er has the authority to override autonomous
operations by the support system, including artifact constructions.

3.8. The system must be able to construct data collection plans.

3.9 The system must be able to retrieve or construct, and then run models of artifact
functionality to produce data and information. This requirement applies to calculation in
general. The sense is that the support system must be capable of exercising, perhaps in the
background, the same tools that the designer uses in order to predict attribute values

53



3.10 The system must be able to assimilate objects into the design state. This capability
involves updating the design database with or for the designer. It includes actions to
access relevant storage bases; locate the correct copy and version of the object; save the
object; create, link, and store annotations that identify or augment the object (author,
time-stamp, explanation, etc.). Specific data management operations are likely to be
system and organization-specific.

4.0 Display Construction for the Designer

The final category focuses on display construction that the support system must do to

enhance the designer's understanding of the design situation. Requirements pertain to enhancing

outputs from tools and presenting explanations that were constructed as a result of other

processing. Tutoring is also considered a form of display construction. In general, the support
system must be able to manipulate displays and present information appropriate to the context,

personalized to user, and responsive to user intent.

4.1 The system must be able to keep the designer informed about the state of his plans (e.g.,
tasks completed, suspended tasks, tasks not started).

4.2 Based on the designer's intentions and context, the support system must be able to
propose approaches, methods, or tools to achieve goals.

4.3 Given a multi-task situation in which it has capability and authority to act, the support
system must be able to partition and allocate tasks between itself and the designer.

4.4 The support system must be able to prioritize and schedule input messages to designer.

4.5 The system must be able to compile quantitative and qualitative data.

4.6 The system must enable the designer to view several representations of the artifact
simultaneously to overcome the low expressiveness of each representation alone. Related
to this, the support system must enable easy navigation between objects and views of the
same object, not imposing a predetermined order of access.

4.7 The support system must be able to tailor displays to the context and designer's
preferences, style, discipline, etc.

4.8 Given input and output variables from modeling or testing exercises and information about
the designer's intentions, the support system must be able to transform, modify, filter, or
otherwise highlight these data to match the information needs.

4.9 The support system must be able to present explanations of the following types of
information:

* terminology
* principles of how past designs work based on design documentation
* nature of phenomena underlying data
* how to construct syntactically correct representations
* syntax problems encountered with models, tools,...

54



* computational sources of spurious results
* methods and tools
,, its own search and retrieval behavior and actions its takes on the design world.
* answers it offers to direct designer's questions

4.10 The support system must be able to transition to more in-depth coverage and approaches
to explaining the above topics (tutoring) if the designer demonstrates failure to understand
or requests elaboration directly.

4.11 The support system must be able to propagate changes made in one view of an object
(e.g., functional) to other views (e.g., structural) and display the results to the designer.

4.12 The support system must be able to notify designer about design state changes due to his
actions, those of other designers and DAs.

4.13 The support system must be able to notify the designer of requirements violations.

For all four categories of requirements, the support system also must be able to adapt the

type and level of support as a function of the designer's reactions and feedback, as well as to his

understanding and inferred intentions. In implementation, this may require extensive dialogue
between the system and designer.

55



IMPLEMENTATION CONSIDERATIONS

Many implementations that can achieve these requirements are feasible, some more
automated than others. To give some sense of the range of possible solutions, consider a
"manual" support system in which the services are performed by human specialists. A partial

model of such a system is seen in the CSERIAC (Crew System Ergonomics Information Analysis

Center), a government-sponsored information analysis center whose mission is to provide

designers with problem-specific technical information about human capabilities. While CSERIAC

personnel cannot monitor the designer's activities in real-time nor affect the artifact autonomously,

they do perform functions that achieve several of the above requirements -- interpret the

designer's intentions and information needs (via dialogue), search and retrieve relevant technical

information, methods, tools, etc., compile results, and tailor the presentation to the particular

user. Explanation and tutoring in a subject are also possible.

While human-based systems are possible, we focused on implementation issues for

meeting the requirements through computer-based means and, more specifically, with mixed-
initiative computer-based solutions. This section examines these issues, first, with a brief

description of general mixed-initiative systems, and then with a version that is tailored to

supporting information access and use in design.

MIXED-INITIATIVE SYSTEMS

Mixed-initiative systems are a new concept in automation that stem from the human-
centered support philosophy discussed earlier and are made possible by advances in intelligent

computing (Rouse, Geddes & Curry, 1987). They "...transcend earlier notions of 'expert systems'

as self-contained, authoritative knowledge sources (Geddes & Edwards, 1991)." Instead, these

systems integrate human and machine intelligence to form a joint cognitive system that is capable

of sharing task demands to achieve overall system goals.

Mixed-initiative systems differ from conventional automation in how task responsibilities

are allocated to the human and machine (Rouse, 1985; Rouse & Cody, 1986). Given automation,

task demands in complex systems can be parsed into three groups: those in which humans are

superior to machines (e.g., pattern recognition); those in which machines are superior to humans

56



(e.g., computatiotially intensive operations); and a third subset in which the two resources
perform equally well although, perhaps, in very different ways (e.g., information retrieval).

Conventional schemes for meeting task demands seek an optimal allocation that remains
invariant across conditions (Bailey, 1982; Kantowitz & Sorkin, 1987). In mixed-initiative
systems, tasks can be allocated dynamically as conditions unfold and according to the resource
levels that each system element exhibits (Rouse & Cody, 1986). Thus, initiative is "mixed" in the
sense that responsibility for tasks can be taken by either the human user or the support system.

Automation Space

Rules that govern each contributor's activity in a mixed-initiative system depend upon two

characteristics of the computer-based component: level of intelligence and level of autonomy.
Figure 17 from Riley (1989) depicts the range of possible mixed-initiative systems in an
"automation space" formed by these two dimensions. Different levels of intelligence are
distinguished by availability of data and processing sophistication. Levels of autonomy are
distinguished by what the support system is permitted to affect and by the override protocols
between computer-based support system and human user. For the most part, le- I of intelligence
applies to inputs to the support system input and level of autonomy applies to system outputs (see
Figure 16).

Focusing first on levels of intelligence, systems that can manipulate and manage raw data

represent the lower boundary of processing sophistication. The majority of today's information
management systems (IMSs) are capable of only this level of processing. IMS users can create,
edit, store, retrieve, link, and otherwise interact with information. Depending on the volume and
variety of data, these functions represent significant implementation challenges from a technical
perspective. Such systems, however, possess no task, context or user knowledge with which to

adjust the types of support they provide.

Task knowledge refers to all aspects of the activities or methods that users in the domain

must be able to perform in order to achieve their goals. This knowledge includes what the tasks
are, conditions under which they are usually demanded, what outputs constitute successful
performance, alternative ways in which they can be performed, and their costs. It also includes
knowledge of what tools and resources can be applied and how to apply them. Task knowledge
enables the system to provide two types of support beyond those capable only of processing raw
data. First, task knowledge permits the system to monitor the human user's activities in order to

57



provide relevant information and, if needed, suggestions on how to proceed. It also enables

checking for mistakes. Second, if called upon by the user to help, task knowledge permits the

system to do a credible job on tasks that the user prefers to relinquish, i.e., systems with task
knowledge are capable of retrieving and applying pre-defined scripts.

LEVEL OF INTELLIGENCE

LU

LEVEL OF AUTONOMY L U Li .

i I-o n-

NONE

INFORMATION ENHANCER
Display SIMPLE DECISION AID

Construction- - - - - -

Only ADVISOR

INTERACTIVE ADVISOR
INFORMATION MANAGER

SERVANT-CLERK

Acts On ASSISTANT
Information ASSOCIATE

World
PARTNER

SUPERVISOR

________AUTONOMOUS SYSTEM

Figure 17. The combination of autonomy and intelligence defines a space of possible in mixed-
initiative systems. Levels of autonomy are distinguished by entities that the system is
permitted to affect (see Riley, 1989).

Context-responsive systems can adjust their behavior to contextual change. In design,

context refers to the state of design world at both high and low levels of aggregation. At a high

level, this includes the state of the overall information environment -- the artifact relative to a

schedule for completion, information sources and their availability, design tools and methods that

are active, the organizational distribution of work, etc. At a low level, context is defined by the

designer's specific location in the abstraction/aggregation space of the artifact (Figure 3). As the

58

30: UA



designer shifts from one location to another in this space, a context responsive support system can

update its model of what the designer is doing and, thereby, adjust its support appropriately.

Personalized systems are responsive to a model of the particular user's characteristics,

preferences, inclinations, historical choices, etc. In today's systems, personalization is exemplified

by "user preference files" that contain settings of levels on various options. More sophisticated

versions of personalized systems permit users to select preferred modes of interacting with the

system and to create standing "contracts" with the system for how tasks should be shared as a

function of conditions. Coupled with contextual knowledge, a personalized automation could

reason that "under these circumstances, this user typically does X ....." Such knowledge could be

used to identify atypical behaviors as well as forecast the user's information needs in a rudimentary

way.

An intent-responsive system uses information from user activity and stored representations

of archetypal plans and goals to infer what he intends to do and how. At this level of intelligence,

the system can offer a wide variety of supports. These include anticipating the user's information

needs based on looking ahead to the next most likely context(s). Coupled with knowledge of task

methods, an intent-responsive system can identify from the user's actions plans or goals that

appear to be "missing." This function supports error monitoring and notification, tutoring, or

intervention by the system in the user's task.

User-state responsive systems can adjust support based on moment to moment variations

in the user's physical and/or cognitive states. This level of intelligence requires special capabilities

for monitoring user state. User-predictive systems can forecast what the user will do next,

including commission of errors.

The types of intelligence summarized above enable much of what a mixed-initiative system

can do for the user. They enable tailoring displayed information to match task needs, the user's

preferences and the user's state of understanding. They enable the system to perform parts of or

whole tasks for the user. They also enable the system to recognize and suggest alternative ways

to approach tasks that the user may not be aware of. This function may include teaching the user

about some topic he might benefit from knowing about.

Mixed-initiative systems also vary in the level of autonomy granted to automation. Based

on Sheridan & Verplank's (1978) concepts, levels of autonomy are distinguished by the entities

that support system is permitted to affect and by the override protocol between the support

59



system and user (Riley, 1989). In Figure 17, systems at the lower six levels of autonomy have no
authority to change the information world; they are restricted to more or less sophisticated forms
of display construction (see Figure 16). Systems at the upper six levels of autonomy have
increasing authority to manipulate the information world.

An information enhancer can compile, transform, highlight, etc., displayed data. In

design, these data can include artifacts, methods, tools, etc. Note, "intelligent" information
enhancement, in which the support system constructs displays based upon the context or the
user's cognitive style or his intentions, is a function of the system's position along the second
dimension of the automation space.

Simple aids provide basic decision support. Given criteria, this type of system can
evaluate multiple alternatives and select the best one, perhaps via optimization. Aids can assess
an alternative's value along a priori characteristics such as relevance and similarity. These systems
can assess the match between the demands of a situation and a particular alternative, where
"alternative" may apply to artifacts, methods, tools, etc.

Advisors can recommend actions and interactive advisors can initiate the communication
of such advice. Depending on level of intelligence, these systems would also be able to explain
their recommendations, and adjust recommendations based on user feedback.

An information manager possesses the highest level of authority with respect to display
management. At this level, the system can basically decide what information should be displayed

and when to the user through prioritization and scheduling.

A servant-clerk can perform tasks specifically assigned by the user that affect the
information world. Depending on level of processing sophistication, a clerk could compensate for

the user's inconsistencies or errors by reference to procedural knowledge. Note, an advisor with
task knowledge could notify the user about procedural errors he makes; a servant represents the
first level at which the system could intervene, at the user's discretion, to correct these mistakes.

An assistant can assume responsibility for tasks with standing permission or by the user's
on-line consent. Assistants basically monitor for conditions that signal the need for a task, check
permission contracts that the user has selected, and act accordingly.

60



Associates may take the initiative to perform tasks without having to obtain the user's
permission. However, the user has ultimate override authority. In contrast, a partner has equal
override authority, and a supervisor can override the user's decisions whereas the designer may
not override the supervisor. Finally, an autonomous system acts outside the user's knowledge and
override authority.

Aztonomy/Intelligence Combinations

It is useful to consider the nature of support at a few locations in the automation space to
illustrate the range of mixed-initiative systems that are possible. At the lowest ends of both
continua, a support system may possess sophisticated data handling capabilities but little else.
Engineering information systems (EIS), for instance, basically fall into the cell defined by "raw
data" processing capability and "no" autonomy. EISs augment tool-to-tool data exchange by
specifying data formats, communication protocols, and data management rules (e.g., configuration
management, dependency tracking, version control, security). A given EIS may contain a
discipline-specific information model (Hadely & Sommerville, 1990; Libardi et al., 1988; Rangan
& Fulton, 1991; Roussopoulous et al., 1991), but, in general, these systems possess no task or
user knowledge and no means to exercise autonomous task control.7

A simple decision aid that can process raw data would behave in a largely algorithmic
fashion. Augmented with task knowledge, the same becomes capable of displaying its selection in
a task-specific manner. When contextual knowledge is added, the decision aid can adjust its
decision-making process to match the particulars of the user's situation. With personalized
knowledge, it can portray its selection in forms that both match the context and the user's
preferred ways of dealing with information. An intent-responsive decision aid is capable of not
only portraying its results in terms of the present context but in a manner that reflects what the
user is likely to do next.

A context-responsive advisor can support the user in dealing with unforeseen or weakly
structured problems (Forbus, 1988; Leifer, 1987; Pugh, 1989). Most present-day "expert
systems" fall into this cell (Geddes & Edwards, 1991). Placed where they are, however, these
systems do not incorporate the user's problem solving strategies or unique expertise. With inputs

"7 Implementing a mixed-initiative system for design will require EIS functionality for information retrieval, tool
access, tool resources access, and so on. But alone, these systems cannot supply the types of support advocated in
this report.

61



about the user's intentions, advisors clearly could provide advice both about what next steps are
reasonable and portray advice in intent-specific ways.

An assistant with task knowledge could execute procedures when called upon to do so.
Many such systems are in operation or are being developed for design in particular (cf. Newsome.

Spillers & Finger, 1989). An assistant's behavior is modeled on procedures and heuristics used by
human designers (Steier, 1990). In design, such systems are especially useful for detailed tasks

that are relatively mundane and time-consuming, such as elaborating design details once
conceptual and functional solutions have been developed. In software design, a current
approximation to assistants with task knowledge are automatic code generators. With knowledge
about the context and user, an assistant system can provide more tailored levels of support.

At higher levels of autonomy, a partner has equal authority with the human user. Actions,

therefore, must be negotiated. A partner which possesses only contextual knowledge may seem
myopic in these negotiations to the human user. With intelligence about the user's style,
intentions and expected next moves, however, a partner may seem more amenable to the user.

Similarly, a supervisor system, which can override the human user's choices, is likely to seem
more cooperative if its actions take the user's expertise and concerns into account.

Processing Structure of Mixed-Initiative Systems

Figure 16 presented the basic structure of a mixed-initiative system. Figure 18 elaborates
the information processing elements required to deliver all levels of support represented in the
automation space for design (Riley, 1989). The support system would need to be capable of

monitoring changes in the design world. It would also need access to the designer's actions
including those directed at the information world, at tools, and at the support system itself.

"Designer sensors" would also be required for the system to be responsive to designer state.

Given these inputs, the system would require extensive modeling, reasoning and internal
communication capabilities to infer the state of the design world as well as the user's context,
state, overall goals and proximal intentions. These deductions would enable the support system
to deduce the user's context-specific information needs and then to plan its own behavior. In
keeping with the human-centered philosophy, goals which support this planning would focus on

augmenting the user's performance, not on "perfecting" the artifact.

62



FPgredc 18SAtlaoatedfr F~~of h itutrl fmxdiiitiessessoigpoesn

Beha vior Tolen dsorsoatinSalA ss m n

D esghr t Support System or monitor

Podel c Inpto cg inf dins
takennr orovn tnformation dep ons

ofauon y O I prot oclst Sam p rsystemtonchnfo er b onre au Pie habieorD Mrmn Dessign Worft Pt

if Ifrmto Support System Oupu Worl s•wr inu T
Detemn Designe V s•

pInormtiz nNeeinp s tne a o thssemn

Figwr 18. nformation Peoc re eive-n systems

n eal Sihntespotsse n uppor Syster.

taenon Decisf raion Supporbt.Thswu eed o rt System'sgasa ela t ee

System Caeh orprisin eoe aDig Ifraionpl a naeetwys eur aiiis

ori detainpus woithin ther sheuppor sytheim andpearance user.asvaccig

63



AUTOMATED DESIGNER'S ASSOCIATES

Perceived Value of Mixed-Initiative Supports

Each combination of intelligence and autonomy represents a qualitatively different type of
support. For design, the perceived value of each combination is likely to depend on the user and

particular circumstances of use. For instance, a user who is a novice with respect to a particular

design discipline may value extensive support -- a system that can monitor his activities associated

with that discipline, offer advice proactively, and even step in and performs tasks as needed to
prevent errors. In contrast, the same individual may appreciate only limited input and tolerate

nothing greater than assistant-levels of activity with regard to areas in which he is expert.

The variable nature of perceived value suggests two conclusions about implementing

system requirements. First, the system must be flexible. Users must have the option to define
level of autonomy on task-by-task and/or situation-by-situation basis. Second, independent of the

level of autonomy the user grants, the system should act on as broad a base of intelligence about

the designer and his situation as possible. Otherwise actions may be inappropriate.

Given the nature of design, we expect that the intent-responsive level of intelligence will

represent an upper boundary for some time to come. Unlike more structured task domains (e.g.,
piloting), design consists largely of cognitive activity. Our capabilities to determine what the

designer may be thinking, in non-intrusive ways, is extremely limited. Perhaps state-responsive or

user-predictive levels of intelligence are possible in limited form. For instance, the system may be
able to deduce designer "confusion" from his persevering on some task, issue, or tool without

apparent progress. Note, this boundary does not imply that the system would be unable to clear
up a designer's confusion about some question or help him to address a complex issue. It simply

implies that the system would not be able to deduce cognitive state or predict the user's next

moves without direct input from the designer. "DA. I'm confused about..."

Based on these observations, Figure 19 portrays a region of the automation space which

delivers all system requirements and, we believe, will be valued by designers. A region of

supports, as opposed to a single cell, is necessary to accommodate users' desire to tailor level of

autonomy. Based on the region's upper boundary of autonomy, the support is labeled a
Designer's Associate, or DA. Figure 20 shows the internal processing requirements for a DA,

noting that a few components needed for user-state and user-predictive levels of intelligence

become unnecessary.

64



LEVEL OF HTELUGENCE

LEVEL OF AUTONOMIY LL

NONE •

INFORMATION ENHANCER

DOiay SIMPLE DECISION AID
Constucton

INTERACTIVE ADVISOR! •m'sV

INFORMATION MANAGER

Acts On ASSISTANT
Infonnadon ASSOCIATE _ -1

World Wrd PARTNER

SUPERVISOR

AUTONOMOUS SYSTEM

Figure 19. The support domain of a Designer's Associate; users can define the support system's
level of authority as desired.

Interactions with a Designer's Associate

Positioned where it is in the automation space, a DA would exhibit fairly well-defined

characteristics and capabilities. A DA would always be subordinate to the human designer, even
on those tasks in which it matches or even surpasses the human user. This will seem foreign to

artifact-driven developers who see operational achievement as the goal as opposed to supporting

the human to reach the goal. The operational consequences of this approach are clear. While
both the user and the associate component may initiate problem-solving activities, the designer
has authority over what activities the associate is permitted to undertake as well as the choices

that the associate actually makes.

The user may undertake any task or interact with the system at any level he wishes. In

terms of Sheridan's levels of automation in human-machine interaction (Sheridan & Verplank,

65



1978), the user may choose to perform at any level of automatic support -- from none to partially

assisted to fully automatic -- with the further option of changing his mind at any time.

In contrast, a DA would have discretion to take initiative only on tasks that the user has

granted it standing authority to do so. As tailored by the user, an associate could perform adjunct

tasks autonomously which support tasks that the user has undertaken. It could enhance the user's

displays, suggest approaches to tasks, monitor activities and the world state, and indicate to the

user where his attention might best be focused. It could provide information to enhance the user's

performance on a task, and other supporting roles (Geddes & Edwards, 1991).

e 0imtn g Support System or monitor
Moe ItrIinputs Dsge'

Ine Inten syte

De assioner G tIs ie lst iate andredict

much precision.

66



The focus on designer support also implies that a DA would continue to help the user
regardless of the plan he adopts. A DA could propose design methods or solutions based on its

domain knowledge and knowledge of the user. The designer could accept, reject or ignore these

proposals. If the designer rejected the DA's proposals, even if the plan is superior to the user's,

the associate would not go dormant. Rather, it would take this reaction into account to improve

its model of ine designer and situation, and marshal its capabilities to support whatever course of

action the user has adopted. In this respect, a DA would exhibit no self-interest.

Humans in systems construct internal models of their situation (Rasmussen 1986, 1988).
These mental models include self-assessment of their own ability to address the situation, of the

resources available and how to operate them effectively, and so on. A DA would need to develop
structurally similar views of the world in order to communicate sensibly with the user.

A DA's goal, however, would not simply be to identify and adopt the designer's view of

things. The designer's view may be impoverished along some dimension in which the associate's

kitowledge is particularly good (e.g., regarding the value of a class of information to the user's

decision-making needs). For similar reasons, a DA would not attempt to impose its model of the
world on the user. Rather, it would identify the user's model in order to refine its own model of

that part of the overall design world. It would also share this model with the designer to help him

understand the DA's point of view.

Given general knowledge of design, a DA could know that "designers use methods and

tools," but would not enforce a particular method or tool. Based on domain and task knowledge,

a DA would also be familiar with several methods and tools, and could propose methods and

tools that it deduced were appropriate to the designer's circumstances. It could also access them

and the resources required for their execution, and explain their underlying principles to the

designer. If needed, a DA could provide tutoring about underlying concepts and principles. It

could also help the designer perform a method by executing some or all of the steps or by

explaining how to proceed so that the designer could perform the steps himself. Regarding tools,
a DA could provide means to estimate parameters, modify or extend the tools, and help diagnose

computationally spurious results. It could perform the clerical work of constructing and

executing tools, and manage tool output. If the DA determined or was told that the designer was

using a particular methodology, then a DA would help him to perform its steps well.

A DA would not enforce a particular design solution. It could know about past artifacts

and artifact fragments, and apprise the designer of these. A DA could retrieve representations and

67



information about relevant artifacts, and also explain their functional and structural properties to

the designer. A DA could evaluate the match between existing artifacts and current requirements.
If the DA determined that the designer was adopting a particular solution, it could help the

designer to instantiate it in his context and apprise him of risks, consequences, or past problems
with regard to particular attributes, e.g., operability, reliability, training requirements.

Based on the knowledge and authority relationships, a DA could provide a variety of

services that the user would experience directly. It could provide error monitoring by observing
the stream of user activity, looking for inconsistencies and anomalies indicative of inadequate,
inappropriate, and incorrect use of system functionality. A DA could provide adaptive aiding

and workload management at least by supporting the user to schedule tasks. More substantively,
the associate could aid by prompting and, as permitted, initiating use of tools and information

sources to actually perform tasks. It could also help with information comprehension by adapting

displays appropriate to the situation and to user's level of expertise.

Designer's Associates Contrasted with Other Forms of Support

The types of support offered by a DA go well beyond those of present-day systems. For

example, as noted earlier, EISs possess no task or user knowledge and no means to exercise
autonomous task control. Design aids for specific problems (e.g., layout, structural analysis,

kinematics analysis), usually embody a discipline-specific representation and can improve data
visualization with advanced display technology (Baldwin et al., 1991). Like EISs, however,

design aids possess no knowledge of the larger design context in which they are used or of the
user's tasks, expertise, and his intentions. Today's design aids have no means to take initiative on

tasks either.

SOFTWARE ARCHITECTURE

Figure 15 presents an architecture for automated versions of a DA. It shows the DA and
design world as independent structures that communicate at several levels of abstraction.
Referring back to Figure 20, this architecture basically elaborates the interconnections between
the DA and the design world, and gathers information processing elements within the DA into a

set of modules.

68



IDEMON TAS iEUSSUSER UOOUNG & OE• -•1
i6

k AWEUNGCONTEXT

UeUsrPresentai Display
Prefutoem Model Interface Layw Controls

Manager Lay-

& Mod•Monitor

RistrbtAe Coiulin
F retdsou f Processing Data Dana & ToohsManager /

"F ~iT

Extenidedl People Links

DESiGNER'S ASSO CIATE - oistr~ d o rnut c ting

Figure 21. A software architecture for a Designer's Associate showing the independence of this

system from the design world.

The architecture conceptualizes the DA as an add-on or attachment to the design world.

This approach accentuates two noteworthy characteristics of our image for a DA. First, the DA's

purpose is to augment the designer's interaction with the world; it does not somehow replace that

world or intervene between the designer and the design world. Rather, a DA functions to monitor

both, looking for opportunities to aid the designer. Second, representing the DA as an add-on

permits the developer to scale its sophistication to correspond with that of the information world.
In this manner, DAs that are specialized to topics or tools become possible.

Structure of the Design Information World

Figure 21 shows the design world parsed into layers, an approach that has become fairly

standard in software engineering (Denning, 1985; Kahn, 1987). The designer interacts with the

Presentation Layer which is composed of controls and displays specialized for human use. Issues

of "look and feel" apply at this layer. Contemporary user interfaces are based on various

69



metaphors (Carroll & Thomas, 1982), e.g., desktop or rooms, and permit the designer to interact

with the underlying information model from several perspectives, usually one perspective per
"window." Future design systems may augment or replace today's flat-panel workstation

solutions with much more exotic interface technology, such as virtual reality in which information

is presented and manipulated in three dimensions (Dekker, 1992). Such environments certainly

will add new types of interaction for the designer's use (e.g., drawing free hand in the air, or

molding virtual objects by hand). However, from an architectural perspective, these types of

interaction are simply different ways to issue commands that retrieve, browse, edit, and view the

underlying information.

The designer's inputs to the Presentation Layer are encoded and passed as commands and

requests to the Information Model. This layer contains abstractions such as "requirements,"

"artifact" and "tool" and their interrelationships. Inputs to the Information Model are, in turn,

converted to commands to retrieve, edit, save, etc., files of actual data records in the Project Data

and Extended Resources layers. These files may contain text, graphics, audio, video, etc. data,

and may be widely distributed across physical locations, databases and formats. In the return

path, data retrieved from the lower layers are composed into higher-order objects at the

Information Model layer. These objects are then cast into particular display formats and projected

for human use.

Project Data and Extended Resources are separated to emphasize differences in

ownership, not structural dissimilarity. Project Data include system-specific data and tools which

may be of a proprietary nature. Extended Resources include system-independent data and tools.

In this view, the Information Model and Project Data layers are sparse or empty at the start of a

new project. As design progresses, this layer becomes populated with representations and data

records for requirements, models, drawings, test results, etc. These files are either created with

various tools by the designer or are copied from Extended Resources into the "local" storage of

Project Data.

Although not shown in Figure 21, there are even more rudimentary layers in the design

world. They include the local operating system, distributed operating system, communications,

and hardware. Several descriptions of these types of layered system are available (cf. Denning,

1985; Kahn, 1987).

70



Structure and Processing Within a DA

Within a DA, as depicted in Figure 21, processes are devoted to communicating with the

design world, assessing the states of the design world and user, planning, and executing plans.

Communications occur at each layer of the design world. The User Interface Manager
monitors the Presentation Layer and communicates information about designer actions to the

User Model and Design Task Manager for additional interpretation and processing. In addition,

the User Interface Manager is responsible for communicating DA messages back to the designer.
Message content is developed by the User Model (e.g., "Is it your intention to...?") and Design

Task Manager (e.g., "The following tasks are still open..."). The User Interface Manager
constructs, schedules and presents displays that result from DA processing and decisions. Hence,
knowledge and principles of good presentk "*on reside within this module. It would tailor
messages according to the designer's intentions and current design context. Also, this module is

responsible for presenting highlighted, transformed, and filtered versions of information that
arrives at the Presentation Layer from the Information Model -- thus, its functionality extends

beyond DA outputs.

The Design Task Manager monitors the Information Model, tracking and evaluating the
state of the design. Since both requirements and artifact representations are assumed to reside
within the Information Model, the Design Task Manager can detect requirements violations,

assess level of completion, etc. The Design Task Manager is also responsible for executing design
tasks that affect the artifact. Its knowledge for performing tasks resides within the Design
Methods and Representations module. In addition, the Design Task Manager creates potential

task allocations between the designer and DA for the designer's consideration.

The Data Processing Manager plans, schedules and executes searches of Project Data and

Extended Resources based on knowledge of where information is likely to reside and protocols

for accessing it. This module uses knowledge and methods that are maintained in a Data Methods

module for how to search and retrieve data.

Communications also occur among the three modules at the task and context modeling

section of the DA. The User Interface Manager sends designer actions and direct requests to the
Design Task Manager. In return, the Design Task Manager sends messages of various types

which the User Interface Manager then packages and presents in an understandable and timely
manner to the designer. Message types from the Design Task Manager include the following:

71



* Proposals regarding alternative methods, task allocations, and suggestions to use DA
functionality to enhance his performance (e.g., "you could use some tutoring given your
level of understanding.")

* Requests for designer interpretations (e.g., intentions, data, plans, etc.) to improve the
user or design world models.

* Notifications of important conditions and events (e.g., design state, requirements
violations or other tensions, significant tradeoff to be considered, open tasks, potential
errors, etc.)

* Compilations of results returned from lower-level searches and data analyses.

* Explanations of procedures, measures, variables, etc.

* Tutorials, which are viewed as a special class of interactive messages.

The Design Task Manager and Data Processing Manager have similar reciprocal
communications. The Design Task Manager requests data and data processing services, such as

runnin-, a model or computing statistics on a data set. The Data Processing Manager fills these

requests by conducting the appropriate searches and procedures, and then returns results. It also

keeps the Design Task Manager informed about its status.

Beyond communicating with the design world, the DA must also be able to assess the

state of the design world to provide . antext-specific, personalized and intent-responsive support.

Past experience in developing intelligent support systems (Rouse, Geddes & Curry, 1987; Rouse,

Geddes & Hammer, 1990) has shown that the key to providing the types of support

recommended in this report lies in being able to know what the human is doing and how these

activities relate to his goals and plans. Determining what the designer is doing accomplished by

the User Interface Manager and Design Task Manager. Determining how they relate to his plans

and goals is a bigger problem. A potential solution to this requirement for design support

emerges from our overall analysis which suggested that design behavior can be described as

trajectories, or sequences of tasks, in the design space depicted in Figures 3 and 4.

If the DA knows where in the design space the designer is, in terms of task and levels of
abstraction and aggregation, as well as likely trajectories he may take, then it should be quite

feasible to provide the recommended types of support. The first need can be fulfilled with an
appropriate Information Model from which the Design Task Manager can determine location in

the design space. Determining the likely trajectory of the designer in the design space requires a
structure such as a plan-goal representation of behavior. In aviation and process control

applications (Geddes & Edwards, 1991; Rouse, Geddes & Curry, 1987; Rouse, Geddes &

72



Hammer, 1990), we have found that much of humans' activities could be described, at least

qualitatively, in terms of behavioral scripts that emerge repeatedly and can provide the basis for

inferring the user's goals and plans. It may be possible that "standard" trajectories in the design
space can be identified and serve the same purpose.

Note, it is unlikely that inferring the designer's intentions from such pre-defined templates

will be foolproof. Thus, we expect that the designer will need to provide explicit statements of
intentions, particularly when intentions or representational ccntexts change.

Much of the tailoring emerges from processing by the User Model. This module receives

inputs about designer activities from the User Interface Manager and about the present context
and design state from the Design Task Manager. Its function is to determine what the designer is

trying to do and what he might do next. These deductions are made by comparing the designer's

activities with a model of design plans and goals and typical methods for achieving them along
with the user's a priori preferences and "style" which are retained in an active knowledge base. If
the User Model cannot explain the designer's behavior, the Error Monitor and Tutor may be
notified to diagnose the designer's activities and to prepare a specific proposal for tutoring.

TECHNOLOGICAL REQUIREMENTS

Clearly, automated versions of the DA in the image of Figure 21 will require contributions

from both conventional and advanced computing technology. New capabilities will be needed in
both the design world external to the DA and component processes within DAs.

Technological Demands of the Design Information World

Alone, the task of compiling and integrating the Extended Resources for a DA is a

daunting one to say the least. Volume, growth rate, syntactic differences (e.g., query languages)
and semantic differences (e.g., terminology) across databases all discourage simple solutions to

constructing useful bases (Rouse, Cody & Boff, 1991; Rouse, Cody, Boff, & Frey, 1990).
However, two observations give the support system developer hope: storage and communications

media are maturing rapidly; and it is not necessary to access all the world's technical data to
provide valuable support.

73



First, the practical difficulties of compiling the relevant information notwithstanding,
solutions to physical storage and communication at least seem plausible. Data format standards
have begun to emerge from industrial and government R&D programs devoted specifically to the

digital exchange of engineering information, e.g., the Computer-aided Acquisition and Logistics
Support (CALS) effort. Advanced optical media already permit construction of massive

electronic archives. Currently available CD ROM, with a capacity of over 600 megabytes, can
store the text of about six hundred 400-page books (Kryder, 1987; Lambert & Ropiequet, 1986).
The burgeoning local- and wide-area networks are laying the necessary voice and data

communication paths. The integrated services digital network (ISDN) will be capable of high-

bandwidth transmission of digitally encoded information of any type (voice, data, facsimile,
video), and is expected to be in operation in some form in the next two decades (Kahn, 1987).

Second, design information systems that support relatively narrow, but still critical
problem areas, can be constructed from small fractions of available technical data. Boff and
Lincoln (1988), for instance, have compiled a wide variety of human perception and performance
phenomena that pertain to display and control system design. This resource is being converted to

electronic media and augmented with interactive simulations of several phenomena (Boff, et aL.,
1991).

The more challenging side of large database construction centers on how to organize and
encode information to support timely and intelligent retrieval. Existing indexing and retrieval
schemes rely on users' abilities to formulate questions and recognize useful returns. These
schemes are inherently limited to the expressive power of natural language. Efforts to model the
conceptual structure and pragmatic import of a data se. from a particular point of view, like

design, are in their infancy.

Beyond data a aitability, currently, there exists no standard Information Model for design.
Figure 22 illustrates the rudiments of such a model for DA needs. This figure presents an entity
relationship diagram (Teorey, Yang & Fry, 1986) for a structural view of an artifact. It shows the
structural breakdown along a central spine with links at each level of aggregation to various types
of supporting information. Vertical and horizontal links possess meanings (e.g., is-composed-
of/is-part-of; uses/is used by; supports/is-supported-by) that permit the designer to access related
information or navigate from one view to another.

74



oat oWn-6in modiefiftna
F-.Bystam requirer :disý
I Functional desc tion marce test

System
Is Cemffcmýslbn tw"W Fee S

I Peripheral int Cos

I User documentation Engýinserina RjRW9ý

Zments PT 4-=.-

410 Function model

Fim-LorecLuromerts I

IlFundional requiro Interface control dýoc=umsnl

Assembly drawin Subsystem wv-siii -

Mnýwneerlng data bliss-)D-# HerdwaremanWacturabilk r ri-

Lmwork Model S Verftstion test results

Internall r - iews Selet test r 6

I Task relationsh ity test results
mfAIj--V-\

I Functional requi iris iebilly I" result

s Unit
ineedre drawings 1 91 pportauffy-rizFuiýremems

-Cwsi
Model # Irderfacecordroldocument

Ps

tests Software 41110
Component

I Timina analvses

S I Indust rkd desion d Certification tests

Comoller reouirem t En neari reviews

omm Comments

Blue r s Hardware Maintainabilk r 5
Component

I Module specifications

I INIC programs Standard
ram

ut uls Module

ommaniq 
t

Standard Preferred

ur n, Toofing Vendor m hine parts

ill of r:Wr inalkelbuy list

Assemb4y
methods

Raw
ftationships material

list operations

Figure 22. Associate forms of support require a rich information model of the design world.

75



As Figure 22 should suggest, information objects of any sort can be attached to any other

object. Also, while Figure 22 shows only first- and a few second-order links, more elaborate
networks are imaginable. Standards for information models are the subjects of great interest

(Linn & Winner, 1986; Salzberg & Watkins, 1990; Rangan & Fulton, 1991; Winner et al., 1988).

Technological Demands of Designer's Associates

Each behavioral component of a DA illustrated in Figures 20 and 21 will require advanced

computing technologies. This section considers several needs organized according to inputs,
internal processing, and outputs of a DA. Of particular interest are needs that emerge from the

unique properties of mixed-initiative systems.

l•=iP... The DA must be able to acquire information from several levels of the design
world in order to construct reasonable assertions about activity and change. At fairly rudimentary

levels, this will require high-volume and high-speed danta exchange akin to the needs of EISs in

general. More abstract levels of acquisition will require pattern recognition, speech recognition,
and natural language understanding to process design objects and to communicate with the

designer.

These technological demands are fairly obvious. Much more subtle needs are associated
with cooperation and shared models between the human designer and intelligent machine. The

hallmark of a mixed-initiative system is that at least two actors can take responsibility for tasks.

To avoid contention over goals and tasks, they must be able to communicate their observations

about the world in mutually understandable ways. Hence, difficulties that attend cross-

disciplinary communications among human designers emerge between the user and DA. Social

psychological research on the resolution of multiple views, negotiation, and consensus formation
as well as natural language dialog analysis provide some foundation for progress in this area. Of

particular concern are issues related to agreement between the designer's model of the world and

the system's model of the world. Disparate models would lead to chaos in subsequent planning

and execution of tasks -- another Tower of Babel (Boff, 1987a).

Internal Processing. As alluded to several times in this report, a DA must be able to

determine the designer's context, task, and intentions as a basis for subsequent planning.

Structural approaches such as plan-goal graph representations of human activity permit machine

reasoning about these matters (Geddes, 1989). These schemes appear to work reasonably well in

structured environments such as air combat piloting. However, creating these structures is very

76



labor-intensive and the extent to which they can be adapted successfully to the loosely structured

environment of design is not clear.

Beyond reasoning from relatively static models of design and the designer, the DA will

also need to update various components of its model of the world continuously. Some
components, such as the designer's style or level of knowledge about a topic, may change fairly

slowly. Other components, such as the state of the artifact, may be more volatile and, therefore,
may require vigilance.

Personalized approaches to support will require "dossiers" on individual users that contain

representations of competence, style, biases, etc. in performing tasks. Furthermore, a DA would
need to update these files regularly to capture slowly evolving trends in the user's knowledge or

style.

Regarding mixed-initiative, if a shared understanding of the situation can be reached, then
a shared understanding of what to do next must follow. Two issues in particular attend this need.
First, planning has been a major area of research in artificial intelligence. Unfortunately,

approaches have been driven exclusively by a model of planning as an autonomous activity, rather

than as a joint activity between cooperating intelligent agents (Geddes & Edwards, 1991).
Moreover, design is such that the designer must create and prosecute several plans at different

levels of abstraction and aggregation concurrently. The computational and reasoning demands

associated with creating, sharing and managing multiple plans between agents are unknown.

Second, cooperative planning between agents with different levels of authority leads to the
issue of adapting to plan rejection. More specifically, if the designer rejects a recommendation by

the DA, then the DA will need to understand why it was rejected in order to improve its model of

the designer's plans and goals. Rejection could occur because the D is "on the wrong track" from

the designer's point of view. Alternatively, rejection may signal that the designer is headed in the

wrong direction but does nor recognize this. When rejections occur, the DA may be able to query
the designer directly to find out what was unacceptable. However, depending on the frequency of

such exchanges, the designer may lose trust in the system's ability to keep up and, consequently,

reduce its authority to contribute.

Outputs. In order to manipulate the user's displays and affect change in the design
environment, a DA will need to possess extensive task knowledge and knowledge about principles

of information portrayal. It will also need the ability to select, configure and use a wide variety of

77



tools. On the one hand, these demands may seem insurmountable. On the other, it is not hard to

imagine such capabilities given the state-of-the-art in intelligent retrieval systems and design aids.

More difficult issues relate to cooperative task execution and monitoring between the

designer and DA. Coordinating these agents' efforts will require adaptive command and control

strategies to prevent contention for tasks and resources. The objective is to ensure that each

agent is clear about who is responsible for what.

SYSTEM EVALUATION

It is useful to consider how a DA might be evaluated. At first glance, evaluation may

seem quite straightforward -- just build and try the DA and see if it works! At an extreme, one
might develop a product using the DA and compare the new product's performance, reliability,

usability, etc., to a product that was designed in the same environment without a DA. As might

be imagined, this could be a very expensive undertaking for even a relatively simple product.

More importantly, however, is the fact that one would learn very little from such a single-point

comparison. Too many confounding influences beyond support system differences preclude
product success from being a useful measure of support system success.

Much more insight can be gained, with substantially less cost, by decomposing the

evaluation question into finer-grained issues at different levels of analysis (Rouse, 1987b). In

particular, we have found it useful to evaluate intelligent support systems in terms of viability,

acceptability, and validity (see Figure 2).

Viability refers to whether the benefits of adopting and using the system outweigh the

costs. This issue will have very different interpretations for different stakeholders in a DA. For

example, viability for the individual designer may hinge on the tradeoff between the marginal

increase in perceived decision quality and added learning requirements of new functions. In

contrast, viability for the designer's organization may be defined in terms of process improvements

at the group and program levels versus costs to purchase and maintain new hardware and
software, train people, etc.

Acceptability refers to whether the solution as implemented is agreeable to users. For

design support, acceptability will be judged along several dimensions including the designer's

78



appraisal of his own performance and versatility with and without the DA, his appraisal of its

performance (response time, reliability) and his appraisal of its "style" (e.g. intrusiveness).

Finally, validity refers to whether the DA improves design decision making. Direct

indicators of decision making quality may be difficult to acquire. Under the assumption that

better information (i.e., broader base) enhances decisions, validity may be indexed by the extent to

which a DA improves the designer's ability to access and use information.

79



CONCLUSIONS

Design presents human decision makers with complex information access and utilization

tasks. While the specific content of their information needs vary, all design contributors must

identify sources, retrieve information, evaluate its implications, encode it, store it, and so on, in
the process of solving problems and making design decisions (Boff, 1990; Rouse, 1987a; Rouse,
Cody & Boff, 1991; Rouse, Cody, Boff & Frey, 1990). The quality with which these operations
are performed is governed by characteristics of the information, the designer, and the designer's
milieu.

Relevant information exists in a variety of places, expressed in many forms, of varying

quality, etc. It includes both system-specific and system-independent elements. Information also
tends to be distributed across "data islands," making availability a problem. The designer may not
be aware of, misinterpret, or not value relevant information that could improve his decisions. For

better or worse, each designer assesses the costs and benefits associated with information access,
and acts in accord with this evaluation. A poor evaluation can effectively block information from

affecting design choices. The surrounding milieu, which is composed of co-workers,
organizations and technology, can interfere with access and use in a variety of direct and subtle

ways.

One approach for improving information access and utilization is through the use of

mixed-initiative support systems. Initiative is "mixed" insofar as responsibility for tasks can be
shared between the human user and the support system according to a set of rules. Made possible

by advances in intelligent computing, mixed-initiative systems "...transcend earlier notions of
'expert systems' as self-contained, authoritative knowledge sources (Geddes & Edwards, 1991),"

by combining human and machine intelligence to empower the human user in achieving his

responsibilities (Rouse, Geddes & Curry, 1987).

Good opportunities for mixed-initiative supports exist where two conditions prevail: the
human user cannot perform effectively in a totally manual mode, but completely autonomous

solutions are outside the state of the art. Fully manual operations may be impractical or
impossible due to task demands that exceed human physical or cognitive capabilities, whether

because they are repetitive and boring, time-critical, hopelessly complex, or require skills from

many domains. Autonomous solutions may be beyond reach for two reasons. Situations in which

unforeseeable circumstances are likely to emerge tend to be poor candidates for complete

80



automation because they prevent closed-form solutions or make automatic solutions cost

ineffective. Also, situations in which a human user will be held socially or ethically accountable

for system behavior are not good candidates for autonomous operation by machine. Given

responsibility, the human must also be able to exercise appropriate authority over system

operations.

These properties are clearly evidenced in dynamic and uncertain environments such as air

combat piloting, air traffic control, and complex process control (Rouse, Geddes & Hammer,

1991). Task demands in these domains make fully manual operation impossible, while uncertainty

and potential for socially catastrophic events also make totally automatic solutions infeasible.

Design differs in many ways from these operationally intensive domains (Rouse, 1988).

However, design shares the chief properties that make mixed-initiative support attractive: a

practically boundless solution space that requires human judgment; task complexity due to the

many technical specialties, information sources and tools that must be summoned; and the present

impracticality of producing design solutions automatically to any but the most mundane of

problems.

While there are a range of potential mixed-initiative systems that vary in terms of
intelligence and autonomy, our reading of the nature of design suggests that associate-level

systems that are responsive to the user's intentions are feasible and will be well-received. This

report has attempted to describe why such Designer's Associates make sense and requirements

that such systems should meet to be valued by their users.

81



FUTURE SCENARIO

In order to provide a more concrete image of a Designer's Associate than can a fist of
requirements, we composed the following scenario of what design practices might be like with the
support of a DA at some time in the future. While reading this story, it is useful to keep in mind
the distinction between capabilities that will exist in the designer's world independent of DA
technology (e.g., virtual reality interfaces) from the functions that a DA might perform. Note, the
scenario does not attempt to capture all 36 of the requirements listed earlier.

Having taken a sip from the first of several morning cups of coffee, Henry turns to his wall-
mounted display to pick up from last evening. He wanted to make some progress on test
procedures before his scheduled time at the virtual lab. The team's prototype for the new feather-
weight night vision system would be arriving from fabrication in a few weeks. Henry was in
charge of the perceptual battery.

"DA?" he asked quietly in the direction of the blackboard-sized screen.
The screen jumps to life. In the lower left comer, a pleasant face appears and answers in a

calm voice. 'DA' is Henry's name for the new information manager, a software system that has
access to all of the tools and information that Henry's organization creates and uses. Everyone
uses it -- designers, managers, manufacturing engineers, secretaries. Henry, like most of the
designers, relies on the system for a variety needs. It handles his interactions with tools; stores
and retrieves his designs, computer models, test data; helps him scour the literature for
information; helps him determine the implications of design choices; keeps track of progress and
open tasks; manages his communications with other members of the organization; and even tutors
him in unfamiliar topics when he desires. In short, DA helps Henry to be a more effective
designer.

"Hello," said the voice. "Sign in please."
Henry quickly scrawls a pattern on the screen with his fingertip, and this action identifies him

to the system. Until now, DA only knew that Henry's station had been activated. Now that DA
knew it was indeed Henry who was talking, he could get on with his work.

"OK, Henry, you're in. Do you want to pick up where you left off?"
"Yes, please."

The face reduces to an icon off to the side. In seconds, several pieces of the test plan that
Henry has been developing appear in windows on the screen -- engineering drawings of the
prototype, instructions for subjects, digital photos of test patterns and objects, presentation
geometry, data collection triggers. Henry scans the materials and attaches some electronic notes
to a few items. Satisfied with the plan so far, he opens a new window to begin laying out the
experimental design. Automatically, the other windows are resized and moved out of the way.

"DA. I need to show performance benefits of the feather-weight system compared to Models
VR68 and VR73. I found out yesterday that we'll have only four subjects for this test. What do
you know about test design considerations with small sample sizes?"

82



Being somewhat new to human performance testing, Henry has given DA a fair amount of
authority in helping him to construct test procedures. If Henry's test design shows weaknesses,
DA can modify the plan subject to Henry's approval. But Henry has restricted DA's role to
interactive advisor when it comes to the feather-weight system itself. It's too early to turn DA
loose on some of the detailed design tasks that will need to be done with the production version.
Nevertheless, DA's cautions about some biomechanical issues and several manufacturing
considerations have been valuable.

Following a brief pause, another window opens adjacent to Henry's. As a list of items begins
to scroll into view, the DA says,

"I have a tutorial on that topic. (Pause) The laser-protection group ran a similar test last
May with five subjects. Paul Thompson was the lead. (Pause) Kelly McGuire in Statistics is
listed as available for consultation. (Pause). Would you like more sources?"

"That's enough. Show the test plan for the laser-protection study, please."
"OK. In the meantime, I will construct an experimental design for your consideration with

three conditions and four subjects that assures acceptable power."
"OK. I'm sure I'll have a few questions."
Henry uses a mouse to click from page to page and highlights a few sections of the other

group's study plan.
"Do you have questions about those passages or are you considering adopting the procedures

for the feather-weight study?" asks the DA.
"Both," replies Henry. "Seems like collecting subjective measures from test subjects is a good

idea. But I'm not sure how to proceed. I wish they would have included more detail about these
rating scales."

Henry continues to read through the laser-protection study.
"I have the test design whenever you'd like to take a look, Henry."
"OK, DA. Let me see it."
Henry examines several charts that show a test matrix, a daily schedule, and various statistical

estimates of test power. He asks several questions about how the design will test certain
combinations of effects. He also notes a schedule conflict that will need to be resolved.

"OK, DA. Let's store this design as a straw man, but I'll want to re-consider it again next
week. In the meantime, show me what you have on subjective measurement techniques."

The test design window closes and Henry selects a few references on measurement to read.
After some time, the DA interrupts Henry.

"Henry?"

"Yes, DA?"
"It's 9:25. Your lab time starts in five minutes."
"Thanks, DA. I'll see you there."
Henry grabs his virtual reality equipment and heads down the hallway. He enters the large

room that is empty except for a comfortable chair off in the corner. He buckles on a small belt
pack, dons a visored headset and pair of gloves. Then he connects cables that lead from the
headset and gloves to the belt pack. The pack contains a power supply and transceiver that
broadcast Henry's position, movements and voice to the information manager. It also receives
video images, sound and pressure signals that are displayed through the headset and gloves.
Henry turns out the room lights and switches on the belt pack. In a few moments, the room
reappears in its virtual form -- correctly sized and empty except for an image of the chair. A

83



calibration panel is floating in mid-air a few feet away. Henry turns and faces the panel straight
on. Reaching out, he presses a key to launch the calibration sequence. After matching up
crosshairs, touching several floating objects, and threading a virtual needle, Henry presses "Done"
on the panel. The room and objects shift slightly and the panel disappears. Now ready, Henry
calls his aid.

"DA?" says Henry.
A few feet in front of Henry, the visage of DA appears and issues the familii: request.
"Hello. Sign in, please."

Henry lifts his gloved hand to trace out a pattern that glows in mid-air, and then waits for
approval.

"OK, Henry, you're in. By the way, I signed you off at your office station."
"Oops. Thanks, DA. Let's pick up from yesterday."
The body of DA disappears, and quickly the room is filled with Henry's test setup and

documents. An optometrist's chair is located near one end of the room facing the opposite wall.
Off to the side is a control console, table and chairs where the experimenters will sit. Track lights
and various projectors appear suspended from the ceiling. A three-dimensional grid glows softly
throughout the space between the optometrist's chair and opposite wall. A dozen or so bluish
tiles appear at various positions in the grid along with numbers that summarize what their visual
properties would be for someone seated in the chair.

Henry turns to a folder on the table. With a right-to-left motion of his hand over the folder, it
opens to page 1 of his test plan. Henry continues gesturing to flip through the pages and stops
when he reaches the section on test patterns.

"DA. Spread this section on that wall, please."
He points to the folder and then to a blank wall as he says this, and about twenty patterns

quickly appear arranged neatly on the wall. After studying the patterns for a while, Henry is ready
to see things from the test subject's point of view.

"DA, present patterns 5, 10, and 17 at display locations 1 through 3. Remove the test chair.
Show display volume at design eye and simulate .001 mL ambient."

Patterns pop into tiles and a transparent box appears at the location where a person's head
would be when he's seated in the chair. Henry stoops slightly to position his head in the box, and
the light level in the lab quickly dims to starlight conditions. As Henry examines the scene and
changes several parameters, the DA's voice sounds in his headset.

"Excuse me, Henry. Stuart has just left voice mail for you. Shall I play it back now?"
"Yes, please."
In the hallway a few days before, the department manager had alerted Henry to keep some

time open for an important job. Maybe this was it.
"Hi, Henry. As expected, I need your help on this X95 problem. Give me a call as soon as

you can. Bye."
"DA."

"Yes, Henry?"
"Call Stuart for me, please."
In a moment, Henry hears the tone sequence and then the phone ring.
"Stuart Cashman," comes the reply.
"Hi, Stuart. Got your message. What's up?"

84



"Thanks for calling back, Henry. As I mentioned to you the other day, our simulator
evaluations of the X95 cockpit are disappointing. In particular, the new traffic situation display is
not improving flight control like we expected. The people in T&E thinks that pilot errors are
somehow to blame, but haven't been much more explicit than that."

"Hmmmm. The standard diagnosis."
"Right, but who knows. I know your busy with 'feather-weight' and MedEx, but this problem

must be resolved before the customer pilots arrive for OT&E."
"When do they arrive?"
"June 8. That gives us a two-week window for re-design with minimal disruption. I asked

DA to recompute your schedule assuming we let MedEx slip. DA. Show the current and revised
schedules to Henry, please."

Two timelines popup in a rectangle before Henry. His tasks and deliverables are highlighted.
After looking over the charts, Henry replies.

"OK. I'll give it a go. But I'd like some of Sharon's time if I run into unfamiliar territory in the
X95."

"Fair enough. Keep me posted," says Stuart as he signs off.
"DA."
"Yes, Henry."
"Annotate the feather-weight test plan with a reminder to check on subjective measurement,

and close the file."
"Shall I clear the lab?"
"Yes, please. And then display the X9, task order."
In a moment, the visual test setup disappears. The room is empty again save a floating folder

marked 'X95 Crew System.' Henry grasps the folder and heads to the chair. He gestures over the
fo!der and begins to read. The statement of work outlines requirements for redesigning the traffic
situation display, or 'TSD.' The specifications include flight control performance requirements
and a real-time software budget, as well as cost and schedule constraints.

"DA. This report says that T&E put together a video. Display the video, please."
Henry leans back in the chair as the video begins, displayed in a large floating window a

comfortable distance away. The tape opens with a rear view of a pilot seated in a state-of-the-art
electronic cockpit. In the foreground, behind the pilot, sits another person perched on an
observer's seat.

"Hi, I'm Al Long and this is Steve Edwards. We made this video in the simulator to help you
diagnose the source of the performance problems. Ready, Steve?"

"Ready," replies Steve.
"Steve is going to fly landings using the new TSD. He will use the information on the TSD to

adjust his controls to minimize deviations from the latest FAA standards for in-trail separation.
This stacks up aircraft as closely as possible to increase airport capacity without risking vortex
problems. Steve lets the onboard flight computer know that he is adjusting separation by pressing
the icon on the left below the TSD."

"The TSD also indicates potential path conflicts, usually with turbulence, but also with shears,
bursts and other aircraft in the vicinity. Steve responds to conflicts by slowing down or
maneuvering away. He tells the computer that he is doing this by pressing the icon on the right.
Let's get going. Hope this helps."

85



"DA. Stop the video here and send the display to that wall. Display a 3-D version of the X95
cockpit at 100%, please."

The video window moves to the wall and in a moment, a solid CAD model of the X95 cab
and cockpit appears in the center of the lab. Henry gets up and walks around behind the cockpit
and peers over the pilot's seatback at the all glass control panel.

"DA. Simulate a canned landing sequence and drive all cockpit displays, please."
"Which airport?"
"Someplace busy."
"I've selected Chicago O'lare. The simulation begins at the outer marker."
For the next few minutes, Henry watches the color cockpit displays as they show what a pilot

would see during a routine final approach. The cockpit is remarkable. Conventional instruments
and CRTs have all been replaced with what looks like a single sheet of touch-sensitive plexiglass.
The aircrew's displays are rear-projected onto this panel. Everything is driven by software.
Among the displays, the new TSD, its symbology, and control icons all look great. So what's the
problem?

"Excuse me, Henry. Your lab time is nearly over."
"All right, DA. Sign me out, and let's continue back in my office."
With a new cup of coffee, Henry begins watching T&E's video on his office display from

where he'd left off in the lab. Every fifth landing or so, Steve executed a modest maneuver to deal
with a conflict. For the rest of the landings, Steve frequently touched the left icon and adjusted
the throttle or flight controls to reduce separation a bit. Everything looked ok.

"DA. Show the landing performance data."
The several graphs and tables showed T&E had problems. In some cases, average separation

actually increased a bit using the TSD, and the variance was often quite large.
"DA. I think we have two alternatives. Either Steve is missing events on the display or he's

responding to events that don't exist. Somehow this is affecting performance."
"There are three alternatives in this type of task," interjects DA.
"What are they?"
As DA responds verbally, a list appears on the screen.
"Misses and no execution; false alarms and unnecessary execution; correct detection and

improper execution."
Henry thinks, yes, this is right. We potentially have detection and/or execution problems.
"DA. Show the X95 cockpit documentation list."
In a moment, a list begins scrolling up the screen.

1. Requirements document
2. Functional block diagrams
3. Simulation model
4. Engineering drawings
5. Parts list
6. Operating procedures
7. Maintenance procedures
8. Training system

86



"That's enough. Show me 2 and 3."
Two windows appear an the screen with the labels X95 Functional Block Diagams' and ¶X95

Simulation Model,' Henry rapidly browses each document, jumping between the two using their
many embedded cross references.

It was not clear to Henry how human performance had been considered in the design. The
simulation model was filled with concatenations of probabilities, but there were no definitions on
the top-level diagrams.

"DA. What is PHE?"
"PHE is defined as the 'probability of human error'."
Do any other probabilities contain the words 'human' or *'formance'in their definitions?"
"PAPF is defined as the 'probability of actuator performance failure'."
"That's all?"
"No other variables have 'human' or 'performance' in their definitions."
"OK. Give me the values of PHE that were used in the simulation studies of the X95 design."
""There are no values of PilE available."
This is too bad, Henry thinks. He'll have to start from scratch. Henry feels that he needs to

represent human performance in much greater detail than just a single probability. He guesses
that representing event detection and maneuver execution separately might suggest a wide range
of re-design options. First, however, he has to figure out how the current design worked.

"DA. What types of models do you have for visual detection?"
"I have information on six models of human visual detection and four pattern recognition

models for automated inspection."
"Display one-page summaries of each of the ten models."
None of the models was exactly what Henry was looking for. But it looked like a reasonable

approximation for his needs would involve a linear combination of features such as distances
between objects, relative velocities, and symbology coding. Actually, perceived features had to
be the variables.

"DA. Do we have any data on people's abilities to perceive distances and i iative velocities?"
"There are four relevant tabulations in the Data Compendium."
"Show all four side-by-side."
While the results for large distances and velocities were quite mixed and context-dependent,

small values produced surprisingly similar performance across contexts. In general, people were
much better at perceiving small changes relative to some reference, rather than absolute values.
In fact, without a reference, humans frequently fail to detect small changes. Henry wondered
whether performance with the TSD might be improved by providing better references for
judgments of separations and relative velocities? He decides to use parameter ranges in a model
that represent performance with both baseline and enhanced references.

"DA. Display our flight control models."
"There are four models available. There is also a tutorial on the GoldenArm model. My

records show that you have used none of these."
"Mhat's true. Do you have any advice?"
"What are you trying to accomplish at the moment?"
"I want to develop a better pilot flight control model for inclusion in the X95 simulation

model."
"I assume 'better' relates to the visual performance materials you have been reading?"

87



"Yes -- more detailed with regard to visual detection of moving display elements and with
manual control performance."

"I recommend your viewing the GoldenArm model tutorial, but using the Pilot flight control
model. The latter will require the fewest modifications to be compatible with the X95 simulation
model."

"Great Display the tutorial."
Following the tutorial, Henry studies the Pilot model. The DA constructs various inputs data

files and displays the results of model runs to Henry. As Henry explores the model's behavior, the
DA occasionally probes him with a brief question to sample his growing ug of the
tools and concepts.

"OK, DA. I think I see. Get the X95 simulation model again. Substitute the following
expressions for PHE."

Henry types in a pair of equations, one related to detection of changes of distances and
velocities, and the other related to control performance. The control equation is actually a call to
the Pilot model along with a set of input values.

"Now rm going to need some parameters," says Henry. "DX Display the X95 engineering
drawings and operating procedures."

Two new windows appear with the appropriate materials. Henry searches a bit and finds the
TSD format definitions and the associated operating procedures.

"DA. I want to modify these temporarily. Make a copy and configure the CAD editor,
please."

Henry adds reference lines to the TSD format that he believes will make it easier for the pilot
to detect changes of separations and relative velocities, modifies the display symbols to better
differentiate traffic from conflicts, and changes cockpit lighting slightly to reduce glare on the
front control panel -- he got the glare reduction idea while reviewing the visual detection models.

When he changes the length of the yoke to lessen the chance of occluding the display, DA
interrupts.

"Henry, are you aware of Specification M39256 regarding yoke mechanical requirements in
the X95 cockpit?"

"DA, I'm sure you're about to tell me about a spec violation. But right now I'm just trying
several things."

Henry knew that making all of the changes that he had in the model was a much simpler
undertaking than convincing the entire X95 cockpit design team would be. However, he would
worry about that team meeting later. Right now he needed to find the source of the performance
problems.

"DA. Compute and save the following dimensions and angles."
Using a mouse, Henry moves a cursor around the X95 engineering drawings, clicking on a

variety of points. As he does this, DA displays the numeric values of the dimension or angle that
Henry has indicated, both on the drawing and appended to a parameter list.

"Great. Now here are my labels for the parameters in your list."
Next to each parameter, Henry types a name. These would be used in the revised X95

simulation model.
"DA. Display the values of these parameters without the changes I just made."
"Do you mean changes of the parameter names?"
"No. No, I mean display the values of these parameters in the original drawings."

88



wfle variable Deviation from Reference Lines cannot be detwmined odesg die orisinal
drawings."

"Of course, that's right. Set it to zero."
There were now two parameter lists displayed, one labeled 'Original X95' and the other 'X95

Modifications.' The variable DRL in the original list was annotated as set to zero.
"DA. Perform two model runs, one with the original parameters and the other with the new

parameters. Plot average aircraft separation and response time to conflicts as a function of traffic
density. Also, plot the data from both runs on the same graph."

Henry stood up, stretched and strolled down the hall while DA scanned the network for
available computing resources, scheduled time, and ran the models. When Henry returned several
minutes later, a data window on his wall display is filled with a tangled mess of lines annotated
with various labels.

Wow, Henry thinks. Lots of noise in these plots. Ill bet the original modelers overdid the
randomness. But, no matter. Average performance should reveal the effects.

"DA. Replot these data with a ten-second moving average."
The displays disappeared and reappeared almost instantly. The tangled mess was gone. But

the results were most disconcerting. The new and original configurations were nearly identical!
"DA. Plot the control components for each model."
The resulting plots showed that while the act of flight control was somewhat different for the

new and original designs, the end result was the same.
"Hmmmn. Looks like Pilot is a pretty adaptable guy," thinks Henry.
"DA. Show the statement of work again."
Henry compares the various model predictions with the criteria in the SOW. Both the new

and original configurations meet the specs, with the new configuration marginally better for
conflict avoidance. Something really troubled Henry, however. Regardless of the parameter
variations, predicted in-trail separation performance was always better than the actual
performance numbers than T&E reported. In other words, the models could not reproduce the
problems that caused T&E to come to Henry in the first place. Something clearly was missing.

"DA. Show the original SOW for the TSD part of X95."
"There are three versions. Should I display all of them?"
"No. Just the one that went out for bids."
The original SOW provided very little additional information beyond the SOW Henry had

received. The only noticeable difference was that the original indicated that two alternative
operating procedures were acceptable. Why had the subcontractor who developed the TSD
chosen one over the other?

"DA. Retrieve the winning subcontractor's TSD proposal and display the section that
discusses proposed operating procedures."

Henry skimmed the proposal. It was too much to expect to find a rationale for their design.
Maybe he could contact the designers?

"DA. Is this company on our network?"
"They were until last year when they were acquired by a conglomerate. Should I attempt

contact?"
"No, disregard. Well keep that as an option."
Henry decides that he might be able to make some headway by assuming that the designers'

choice had been arbitrary. Perhaps he could figure c .iy it should not have been arbitrary?

89



'•DA. Extract the descriptions of the alternative operating procedures from the original SOW.
Get the subcontractors description from their proposal. Get the sections from the X95
documentation about TSD operating procedures. Display all of these items side-by-side."

For the next several minutes, Henry compares the three sources. He finds only one salient
difference. One of the procedures, the one actually adopted, involved first pushing either the left
or right icon and then adjusting in-trail separation or executing a conflict avoidance maneuver,
depending on which icon was pressed. The alternative procedure, the one not adopted, involved
first maneuvering and then telling the flight computer why you acted. So the button push
followed the control activity. Henry couldn't see how the difference between the two could really
matter.

"DA. What do you know about procedural errors?"
A list of options starts to scroll up the screen.

1. Background readings
2. Tutorial
3. Classification schemes
4. Analysis methods

Henry touches the Classification Schemes line on the screen.
"There are four schemes available," DA responds. "They include...."
"DA. Just give me the simplest one."
A list appears on the display with some terse definitions and a little more jargon than Henry

was hoping for. Most of the concepts were pretty straightforward though.
"DA. What is a 'capture error'?"
"A capture error is likely to occur when a specified procedure interferes with a population

stereotype ....."
"What's a population stereotype?"
"A population stereotype is a standard way of doing something that usually has evolved over a

long period of time."
"DA. Can you provide an example, please."
"You are driving home from work with the intention of stopping for groceries. As you pull

into your own driveway, you realize that you forgot to stop for the groceries. In this:situation,
you were captured by the stereotypical procedure for driving home."

Henry ponders this. Interesting. But, there didn't seem to be any population stereotype for
X95. Unless...

"DA. Summarize the specific differences between using the TSD to optimize separations and
using it to avoid conflicts."

"To optimize in-trail separations, the pilot is instructed to press the left icon and then take
control actions as necessary. For conflicts, the pilot is instructed to press the right icon and then
make appropriate conflict avoidance maneuvers."

Aha! For every tenth or twentieth landing, the pilot presses the right icon and goes through
the conflict avoidance procedures. For the other nine or nineteen landings, he presses the left
button to squeeze in a little closer to the aircraft in front of him -- and he does this much more
frequently. Henry supposes that every once in while, the pilot presses the left icon when he

90



intended to press the right one. As a result, the onboard computer interprets his intention is to
optimize separation when in fact he is trying to avoid a conflict.

"DA. Retrieve the X95 simulation model. I have an idea. Label the original model PROCI
and nmkc mc a copy labeled PROC2. Also bring up the editor."

Henry then procceds to change PROC2 to correspond to the procedure that the TSD
designers did not choose. Beyond changing the order of operations, he also moved the icons
further apart and replaced their text labels with pictures -- one portrayed a turbulence cloud and
the other two aircraft in line.

"DA. Modify the parameter list to reflect the layout changes and run PROCI and PROC2."
"The PY IE equations cannot be computed for PROC2."
That's right, thought Henry. He forgot. In fact, PHE would not be right for PROCI either.
"DA. Have you got any human error data?"
"There are 128 tabulations in the Data Compendium that include human error as a dependent

variable."
"Whoa. That's not going to work. What do you have regarding procedural errors?"
"There are no entries for procedural errors. There is one compilation for actuation of buttons,

switches and levers."
"Better yet! Let me see it."
The data in the table looked great for PROC2 where Henry thought he had greatly lessened

the likelihood of capture errors. However, he didn't know what to do for PROCI where he
wanted to represent a high likelihood of capture errors.

"DA. I'm stuck on PROCI."
"In the past, when you've made comments like this, we have usually ended up using sensitivity

analysis."
"You're right. That's it."
"DA. Set up PHE for PROC I to range from the same values as PROC2 to ten times those

values. Then run the two models."
"Do you still want a ten-second moving average?"
"Yes, that's fine."
Henry strolled down the hall, sensing he had the answer. But it was going to take more than

warm feelings to convince T&E that he'd found the source of the problem. It would take even
more to convince the X95 cockpit design team to modify its software.

The plots on Henry's display looked very promising. The PROCI results matched actual
performance when PHE equaled roughly twice the baseline value. It looked like capture errors
might in fact be the problem. The PROC2 results actually exceeded required performance a bit.
Now, Henry thought, he needed some real data to support his explanation.

"DA. I need your help again in developing an experimental test design. Figure out how many
subjects and test days we'll need. 'Then check the schedule at the X95 manned simulator for
openings to run a test."

Henry needed a quick and dirty part-task simulation in which he could vary the same
parameters as he did in the models except, of course, for the human performance parameters
which he wanted to measure. After some back and forth with the DA about the test design,
H-Ictry is satisfied.

"DA. Send this plan to everybody involved and convene a meeting on the network for early
tomorrow morning."

91



Ten hectic days later, Henry was sitting again in his office looking at the experimental results
Things hadn't gone quite as planned. There were some holes in data and the last few sessions
were useless because of an instrumentation failure.

"DA. What do you know about statistical analysis with lots of missing data."
"There is a general tutorial as well as tutorials associated with each of three statistics packages

that we have."
"OK. Run the general tutorial, please."

Henry finally got to results and conclusions. It required all sorts of approximations and
figuring out reasonable worst-case assumption. Not much fun.

"DA. Overlay the experimental results and the PROC2 results."
The predictions of X95 performance were a little lower than the actual measurements. The

differences were not large but they were systematic. Henry wondered whether he was missing
something.

"DA. Are any of the displayed differences between the data and the PROC2 predictions
statistically significant?"

"None are significant. The underlying variances in both sets of data are very large."
"They don't look that large."
"You asked that both data sets be smoothed via ten-second averaging for display purposes.

Do you want to see the original, unsmoothed plots?"
"No, thanks. I forgot. Let's not worry about it. Display the SOW from T&E again, please."
Rereading the SOW and carefully cross-checking with experimental results, Henry believed

that the new design might actually exceed the performance requirements by 5% or so. He
thought about changing his new icons pictures to make them a bit easier to confuse. This is the
kind of perverse thinking that's allowed when you know you've found it, Henry thought.

"DA. Let's look at the T&E video again."
Henry watched Steve make landings and imagined him using the new operating procedures, as

well as the moving references lines, icons, etc. It was going to work, he thought. The human
errors that had been designed in, had now been designed out of the system.

"DA. Schedule a meeting with T&E and the X95 cockpit design team, please. You have my
schedule. Query theirs and pick a time."

"Done."

Henry's on-line calendar blinked and then showed a highlighted block for next Tuesday.
"DA. Now about those subjective measurement procedures ....."

92



REFIERENCES

Allen. T.J. (1977). Managing theflow of technology. Cambridge, MA: MIT Press.

Allen, T.J. (1986). Organizational structure, information technology and R&D productivity.
IEEE Transactions on Engineering Management, Vol. EM-33, 4, 212-217.

American Society of Mechanical Engineers. (1986). Goals and priorities for research in
engineering design: A report to the design research community. New York: Author.

Bailey, R.W. (1982). ltwman performnance engineering: A guide for system designers.
Englewood Cliffs, N.J.: Prentice Hall.

Baldwin, D.F., Abell, T.E., Lui, M.M., DeFazio, T.L., & Whitney, D.E. (1991). An integrated
computer aid for generating and evaluating assembly sequences for mechanical products.
IEEE Transactions on Robotics and Automation, Vol 7, No. 1, 78-94.

Ballay, J.M. (1987). An experimental view of the design process. In W.B. Rouse and K.R. Boff(Eds.), System design: Behavioral perspectives on designers, tools and organizations. New
York: North Holland.

Beevis, D. (1987). Experience in the integration of human engineering effort with avionics
systems development. In AGARD Conference Proceedings, 417, The Design Development
and Testing of Complex Avionics Systems, Neuilly Sur Seine, France.

Begg, V. (1984). Developing expert CAD systems. London: Kogan Page.

Blanchard, B.S. & Fabrycky, W. J. (1981). Systems engineering and analysis. Englewood Cliffs,
New Jersey: Prentice Hall.

Boff, K.R. (I 987a) The Tower of Babel revisited: On cross-disciplinary chokepoints in systems
design. In W.B. Rouse and K.R. Boff (Eds.), System design: Behavioral perspectives on
designers, tools and organizations. New York: North Holland.

Boff, K.R. (1987b). Designing for design effectiveness of complex avionics systems. In AGARD
Conference Proceedings, 417, The Design Development and Testing of Complex Avionics
Systems, Neuilly Sur Seine, France.

Boff, K.R. (1988) The value of research is in the eye of the beholder, Human Factors Society
Bulletin, 31, 1-4.

Boff, K.R. (1990). Meeting the challenge: Factors in the design and acquisition of human-
engineered systems. In H.E. Booher (Ed.), People, machines and organizations: TheMANPRINT approach to system integration. New York: Van Nostrand Reinhold.

Boff, K.R. Kaufman, L., & Thomas, J.P. (1986). Handbook of perception and human
performance. New York: Wiley.

Boff, K.R., & Lincoln, J.E. (1988). Engineering data compendium: Human perception and
performance. Wright-Patterson AFB, OH: Armstrong Aerospace Medical Research
Laboratory.

93



Boff, K.R., Monk, D., Swierenga, S., Brown, C. & Cody, WJ. (1991). Computer-aided human
factors for system designers. In Proceedings of the Human Factors Society 35th Annual
Meeting, San Francisco, CA, Vol H, pp. 332-336.

Bogner, M.S. (1988). Catalogue of MANPRINT methods. Alexandria, VA: U.S. Army Research
Institute.

Borovansky, V.T. (1987). Teaching engineering students to utilize information resources.
International Journal of Applied Engineering Education, 3, 87-92.

Broadbent, G. (1988). Design in architecture. London: David Fulton Publishers.

Brown, D.C. & Chandrasakaran, B. (1989) Design problem solving. London: Pitman.

Bruns, G.R. & Gerhart, S.L. (1986). Theories of design: An introduction to the literature. MCC
Technical Report Number STP-068-86. Austin, TX: Microelectronics and Computer
Technology Center.

Burger, W.E. (1991) Too many lawyers, too many law suits. New York Times, May 12, pp. 12.

Buur, J. & Andreasen, M.M. (1989). Design models in mechatronic product development.
Design Studies, 10(3), 155-162.

Buxton, J.N. & Malcolm, R. (1991). Software technology transfer. Software Engineering
Journal, 5, 17-23.

Carroll, J.M. & Thomas, J.C. (1982). Metaphor and the cognitive representation of computing
systems. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-12, 107-116.

Carroll, J.M, Thomas, J.C., & Malhotra, A. (1979). Clinical-experimental analysis of design
problem solving. Design Studies, 1(2), 1-9.

Chandrasakaran, B. (1990). Design problem solving: A task analysis. Al Magazine, 11, 59-71.

Cody, W.J. (1989). Designers as users: Design supports based on crew system design practices.
In Proceedings of the American Helicopter Society 45th Annual Forum, Boston.

Cody, WJ., & Rouse, W.B. (1989). A test of criteria used to select human performance models.
In G. R. McMillan, (Ed.), Applications of human performance models to system design. New
York: Plenum Press.

Corcoran, E. (1988). Groupware. Scientific American, July, 110-111.

Curtis, B., Krasner, H., & Iscoe, N. (1988) A field study of the software design process for large
systems, Communications of the ACM, 31, 1268-1287.

Dekker, K. (1992). A future interface for computer-aiding styling. Design Studies, Vol. 13, 42-

53.

Denning, P.J. (1985). Computer networks. American Scientist, Vol. 73, 127-129.

Dixon, J.R. (1966). Design engineering: Inventiveness, analysis, and decision making. New
York: McGraw Hill.

94



Edcr, W.E. (1988). Education for engineering design: Application of design science.
International Journal of Applied Engineering Education, 4, 167-184.

Emery, J. & Parks, R. (1987). Crew station design process overview. Ft. Worth, TX: Bell
Helicopter Textron.

Finger, S. & Dixon, J.R. (1989a). A review of research in mechanical engineering design. Part L:
Descriptive, prescriptive, and computer-based models of design processes. Research in
Engineering Design, 1, 51-67.

Finger, S. & Dixon, J.R. (1989b). A review of research In mechanical engineering design. Part
lI: Representations, analysis, and design for the life cycle. Research in Engineering Design, 1,
121-137.

Floyd, B. (1991). The CAD tQcome. Workstation News. April.

Forbus, K.D. (1988). Intelligent computer-aided engineering. Al Magazine, Fall, 23-36.

Frey, P.R., Sides, W.H., Hunt, R.M., & Rouse, W.B. (1984). Computer-generated display
system guidelines: Volume 1: Display design. (Technical Report. N3701, Volume 1). Palo
Alto, CA: Electric Power Research Institute.

Galegher, J., Kraut, R.E., & Egido, C. (1990). Intellectual teamwork: Social and technological
foundations of cooperative work. Hillside, NJ: Erlbaum.

Gardiner, M.M. & Christie, B. (eds.) (1987). Applying Cognitive Psychology to User-Interface
Design. New York: Wiley.

Geddes, N.D. (1989). Understanding human operators' intentions in complex systems.
Unpublished Ph.D. Dissertation, Georgia Institute of Technology.

Geddes, N.D. & Edwards, G.R. (1991). Human-machine cooperation in associate systems.

Gemunden, H.G. (1985). Perceived risk and information search. A systematic meta-analysis of
the empirical evidence. International Journal of Research in Marketing, 2, 79-100.

Gero, J.S. (1990) Design prototypes: A knowledge representation scheme for design. Al
Magazine, 11, 26-36.

Gerstberger, P.G. & Allen, T.J. (1968). Criteria used by research and development engineers in
the selection of an information source. Journal of Applied Psychology, 52, 272-279.

Goel, V. & Pirolli, P. (1989) Motivating tre notion of generic design within information-
processing theory: The design problem space. At Magazine, 10, 18-36.

Gould, .l.D. & Lewis, C. (1985). Designing for usability: Key principles and what designers think.
Communications of the ACM, 28, 300-311.

Guindon, R. (1992). Requirements and design of DesignVision: An object-oriented graphical
interface to an intelligent software design assistant. In Proceedings of CHi '92: Human
Factors in Computing Systems, Monterey, CA. New York: ACM.

Hadley, N. & Sommerville, 1. (1990). Integrated support for systems design. Software
Engineering Journal, 6, 331-338.



Hammond, N.V., Jorgensen, A.H., MacLean, A., Barnard, PJ. & Long, J.B. (1983). Design
practice and interface usability: Evidence from interviews with designers. In Proceedings of
CHI '83: Human Factors in Computing Systems, Boston. New York: ACM.

Hazelfigg, G.A. (1988) The engineering method. Engineering Education, Nov, 118-121.

Hunt, R.M. (1987) The difficulties of design problem formulation. In W.B. Rouse and K.R. Boff
(Eds.), System design: Behavioral perspectives on designers, tools and organizations. New
York: North Holland.

Johnson, E.M. (1987). The role of man in the system design process. In W.B. Rouse and K.R.
Boff (Eds.), System design: Behavioral perspectives on designers, tools and organizations.
New York: North Holland.

Kahn, R.E. (1987). Networks for advanced computing, Scientific American, 257, 136-143.

Kantowitz, B.H. & Sorkin, R.D. (1987). Allocation of functions. In G. Salvendy (ed.), Handbook
of human factors. New York: Wiley.

Klein, G.A. (1987). Analytical versus recognitional approaches to design decision-making. In
W.B. Rouse and K.R Boff (Eds.), System design: Behavioral perspectives on designers, tools
and organizations, 175-186. New York: North Holland.

Kraemer, K.L. & King, J.L. (1988) Computer-based systems for cooperative work and group
decision making. ACM Computing Surveys, 20, 115-146.

Kryder, M.H. (1987). Data-storage technolgies for advanced computing. Scientific American,
257, 116-125.

Lambert S. & Ropiequet S. (eds.) (1986). CD ROM: The New Papyrus. Redmund, WA:
Microsoft Press.

Libardi, E.C., Dixon, J.R., & Simmons, M.K. (1988) Computer environments for design of
mechanical assemblies: A Research Review. Engineering with Computers, 3, 121-136.

Leifer, L. (1987). On the nature of design and an environment for design. In W.B. Rouse and
K.R. Boff (Eds.), System design: Behavioral perspectives on designers, tools and
organizations. New York: North Holland.

Linn, J.L. & Winner, R.I. (Eds) (1986). The Department of Defense Requirements for
Engineering Information Systems. Alexandria, VA: The In: "tute for Defense Analysis.

Linton, P. (1987). Crew station design methodology. Stratford, CT: Sikorsky Aircraft Division,
United Technologies Corporation.

Lintz, L.M., Askren, W.B., & Lott, W.J. (1971). System Design Trade Studies: The Engineering
Process and Use of Human Resources Data. Report No. AFHRL-TR-71-24. Wright
Patterson AFB, OH: Air Force Human Resources Laboratory.

Maher, M.L. (1990). Process models for design synthesis. Al Magazine, 11, 49-58.

Malhotra, A., Thomas, J.C., Carroll, J.M., & Miller, L.A. (1980). Cognitive processes in design.
International Journal of Man-Machine Systems, 12, 119-140.

96



McMillan. O.R. (Ed.), (1989). Applications of human performance models to system design.
New York: Plenum Press.

Meister, D. & D.E. Far= (1967). The utilization of human factors information by designers.
H!uman Factors, 9(1), 71-87.

Meister, D. (1989). Conceptual aspects of human factors. Baltimore, MD: Johns Hopkins Press.

Meister, D., Sullivan, D.J., Finley, D.L., & Askren, W.B. (1969). The Design Engineer's
Concept of the Relationship Between System Design Characteristics and Technical Skill
Level. Report No. AFHRL-TR-69-22. Wright Patterson AFB, OH: Air Force Human
Resources Laboratory.

Mostow, J. (1985). Toward better models of the design process. Al Magazine, 6, 44-57.

Nadler, G. (1985). Systems methodology and design. IEEE Transactions on Systems, Man and
Cybernetics, Vol. SMC-15,685-697.

Newsome, S.L., Spillers, W.R., and Finger, S. (Eds.). (1989). Design Theory "88. New York:
Springer Verlag.

O'Reilly, C.A. (1982). Variations in decision makers'use of information sources: The impact of
quality and accessibility of information. Academy of Management Journal, 25, 756-771.

Ostrofsky, B. (1977). Design, planning and developmental methodology. Englewood Cliffs,
New Jersey: Prentice Hall.

Packard, D. (Ed). (1986). Interim report by the President's blue ribbon commission on defense
management. Washington, D.C.: U.S. Government Printing Office.

Pahl, G. & Beitz, W. (1984). Engineering design. New York: Springer Verlag.

Perrow, C. (1983). The organizational context of human factors engineering. Administrative
Science Quarterly, 28, 521-541.

Perrow, C. (1984). Normal accidents. New York: Basic Books.

Promisel, D.M., Hartel, C.R., Kaplan, J.D., Marcus, A., & Whittenburg, J.A. (1985). Reverse
Engineering: Human Factors, Manpower, Personnel, and Training in the Weapon System
Acquisition Process. Technical Report 659. Alexandria, VA: U.S. Army Research Institute..

Pugh, S. (1989). Knowledge-based systems in the design activity. Design Studies, 10(4), 219-
228.

Rangan, R. & Fulton, R.E. (1991). A data management strategy to control design and
manufacturing information. Engineering with Computers, 7, 63-78.

Rasmussen, J. (1986). Information processing and human-machine Interaction: An approach to
cognitive engineering. New York: North Holland.

Rasmussen, J.R. (1988). A cognitive engineering appach to the modeling of decision making
and its organizaton in process control, emergency'management, CAD/CAM, office systems,
and library systems. In W.B. Rouse (ed.), Advances in Man-Machine Systems Research.
Greenwich, CT: ]AT Press.

97



Riley, V. (1989). A general model of mixed-initiative human-machine systems. In Proceedings of
the Human Factors Society 33rd Annual Meeting, Denver, Co.

Rinderle, J.R. et al. (1989). Form-function characteristics of electro-mechanical designs. In S.L
Newsome, W.R. Spillers and S. Finger (Eds.), Design Theory '88. New York: Springer
Verlag.

Rosenblatt, A. & Watson, G.F. (Eds.) (1991). Concurrent engineering: Competitive product
development. IEEE Spectrum, July.

Rouse, W.B. (1982). On models and modelers: N cultures. IEEE Transactions on Systems,
Man, and Cybernetics, 12, 605-610.

Rouse, W.B. (1985). Optional allocation of system development resources to reduce and/or
tolerate human error. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, 620-
630.

Rouse, W.B. (1986). On the value of information in system design: A framework for
understanding and aiding designers. Information Processing and Management, 22, 217-228.

Rouse, W.B. (1987a). Designers, decision making, and decision support. In W.B. Rouse and
K.R. Boff (Eds.), System design: Behavioral perspectives on designers, tools and
organizations. New York: North Holland.

Rouse, W.B. (1987b). On meaningful menus for measurement: Disentangling evaluative issues in
system design. Information Processing and Management, 23(6), 593-604.

Rouse, W.B. (1988). Intelligent decision support for advanced manufacturing systems,
Manufacturing Review, 1,236-243.

Rouse, W.B. (1991). Design for success: A human centered approach to designing successful
products and systems. New York: Wiley.

Rouse, W.B. (1992). Strategies for innovation: Creating successfid products, systems, and
organizations. New York: Wiley.

Rouse, W.B. (in press). 7atalystsfor change. New York: Wiley.

Rouse, W.B. & Boff, K.R. (Eds) (1987). System design: Behavioralperspectives on designers,
tools, and organizations. New York: North Holland.

Rouse, W.B. & Cody, W.J. (1986). Function allocation in manned systems design. In
Proceedings of the 1986 International Conference on Systems, Man and Cybernetics.
Atlanta, GA.

Rouse, W.B. & Cody, W.J. (1988). On the design of man-machine systems: Principles, practices,
and prospects, Automatica, 24, 227-238.

Rouse, W.B. & Cody, W.J. (1989a). A theory-based approach to supporting design decision
making and problem solving, Information and Decision Technologies, 15, 291-306.

Rouse, W.B. & Cody, W.J. (I989b). Designers' criteria for choosing human performance models.
In G.R. McMillan, (Ed.), Applications of human performance models to system design. New
York: Plenum Press.

98



Rouse, W.B., Cody, W.J., & Boff, K.R. (1991). The human factors of system design:
Understanding and enhancing the role of human factors engineering. International Journal of
human Factors in Manufacturing, 1, 87-104.

Rouse, W.B., Cody, W.J., Boff, K.R., & Frey, P.R. (1990). Information systems for supporting
design of complex human-machine systems.. In C.T.Leondes (Ed.), Advances in control and
dynamic systems. Orlando, FL: Academic Press.

Rouse, W.B., Geddes, N.D., & Curry, R.E. (1987). An architecture for intelligent interfaces:
Outline of an approach to supporting operators of complex systems, Human Computer
Interaction, 3, 87-122.

Rouse, W.B., Geddes, N.D., & Hammer, J.M. (1990). Computer-aided fighter pilots, IEEE
Spectrum, 27, 38-41.

Rouse, W.B., Kisner, R.A., Frey, P.R., & Rouse, S.H. (1984). A method for analytical
evaluation of computer-based decision aids. Oak Ridge National Laboratory, Technical
Report NUREG/CR-3655.

Rouse, W.B. & Rouse, S.H. (1983). A framework for research on adaptive decision aids,
Aerospace Medical Research Laboratory, Report TR-83-082.

Roussopoulos, N., Mark, L., Sellis, T., & Faloutsos. (1991). An architecture for high
performance engineering information systems. IEEE Transactions on Software Engineering,
Vol. 17, 22-33.

Sage, A.P. (1981). Organizational and behavioral considerations in the design of information
systems and processes for planning and decision support. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-1l, 640-678.

Salzberg, S. & Watkins, M. (1990). Managing information for concurrent engineering:

Challenges and barriers. Research in Engineering Design, 2, 35-52.

Schon, D.A. (1983). The reflective practitioner. New York: Basic Books.

Sewell, D.R. (1990). A study of designers' questions in a group problem solving con text.
Atlanta, GA: Search Technology.

Shah, J.J. & Wilson, P.R. (1989). Analysis of design abstraction, representation, and inferencing
requirements for computer-aided design. Design Studies, 10(3), 169-178.

Sheridan, T.B. & Verplank, W.L. (1978). Human and computer control of undersea
teleoperators. (Tech. Report). Cambridge, MA: M.I.T. Man-Machine Laboratory.

Silverman, B.G. (1990). Critiquing human judgment using knowledge-acquisition systems. Al
Magazine, Fall, 60-79.

Smith, G.F. & Browne, G.J. (in press) Conceptual foundations of design problem solving. IEEE
Transactions on Systems, Man & Cybernetics.

Smith, J.M. (1981). Wicked design problems and interactive optimization. In Proceedings of
the 1981 IEEE International Conference on Cybernetics and Society, Atlanta, Georgia,
October, pp. 218-224.

99



Spillers, W.R. & Newsome, S.L. (1989). Design theory: A model for conceptual design. In S.L.
Newsome, W.R. Spillers, and S. Finger (eds.) Design Theory '88. New York: Springer-
Verlag.

Steier, D. (1990). Creating a scientific community at the interface between engineering design
and Al. At Magazine, 11, 18-22.

Sur, R. & Shimizu, M. (1989). Design for analysis: A new strategy to improve the design
process. Research in Engineering Design, 1, 105-120.

Teorey, T.J., Yang, D., & Fry, J.P. (1986). A logical design methodology for relational database
using the extended entity-relationship model. Computing Surveys, 18, 197-222.

U.S. Congress, Office of Technology Assessment. (1989). Holding the edge: Maintaining the
defense technology base, OTA-ISC-420. Washington, D.C.: U.S. Government Printing
Office.

Ullman, D.G., Dietterich, T.G., & Stauffer, L.A. (1988). A model of the mechanical design
process based on empirical data: A summary. In J.S. Gero (ed), Artificial intelligence in
Engineering: Design. Amsterdam: Elsevier.

Wahlstrom, B., H-,nonen, R., Ranta, J., & Haarla, J. (1985). The design process and use of
computerized tools in control room design. Nordic LIT-3.1 Project. Espoo, Finland:
Technical Research Centre of Finland.

Webster, D.E. (1988). Mapping the design information representation terrain. Computer, 21, 8-
23.

Whitney, D.E. (1990). Designing the design process. Research in Engineering Design, 2, 3-13.

Winner, R.I., Pennell, J.P., Bertrand, H.E., & Slusarczak, M.G. (1988). The role of concurrent
engineering in weapon system acquisition. AD/A203 615. Alexandria, VA: Institute for
Defense Analysis.

Zachary, W. (1986). A cognitively based functional taxonomy of decision support techniques,
Human-Computer Interaction, 2, 25-63.

100



APPENDICES

A. GENERAL TASKS AND ALTERNATIVE SUPPORT CONCEPTS

The following description of general tasks and support concepts is taken from Rouse
(1991).

In order to organize information on past experiences in developing aiding and support
systems, Rouse & Rouse (1983) reviewed more than 100 past aids and support systems. Most of
these efforts were in the aerospace industry. This review led to the conclusion that all of these
efforts were concerned with supporting one or more of the set of 13 general tasks shown in
Figure A-I. This set of tasks was sufficient to classify and describe all of the aids and support
reviewed in this analysis. A subsequent analysis of aids and support systems in the process
control domain confirmed the generality of the scheme in Figure A-1.

Execution and Monitoring

1. Implementation of plan
2. Observation of consequences
3. Evaluation of deviations from expectations
4. Selection between acceptance and rejection

Situation Assessment: Information Seeking

5. Generationlidentification of alternative information sources
6. Evaluation of alternative information sources
7. Selection of alternative information sources

Situation Assessment: Explanation

8. Generation/identification of alternative explanations
9. Evaluation of alternative explanations
10. Selection of alternative explanations

Planning and Commitment

11. Generation/identification of alternative courses of action
12. Evaluation of alternative courses of action
13. Selection of alternative courses of action

Figure A-I. General system users perform thirteen types of task.

Two characteristics of the tasks in Figure A-] are of particular significance. First, most of
the tasks involve generation, evaluation and selection among alternatives. Use of this standard

101



terminology is helpful for identifying approaches to enhancing abilities and overcoming limitations
in these tasks. The second noteworthy characteristic of Figure A- I is the emphasis on alternatives
in terms of interpretations of deviations, information sources, explanations and courses of action.
hence, the structure of Figure A- I is based on a three-by-four array of action words (generation,
evaluation, selection) vs. objects of actions (types of alternative). This degree of structure brings
an important consistency and rigor to the process of characterizing user-system tasks.

Aiding requirements can be expressed in terms of needs to support one or more of the
tasks in Figure A- 1. Equivalently, support requirements can be stated in terms of needs to assist
users in generation, evaluation, or selection, and possibly implementation or observation. Based
on the review of more than 100 systems, it was concluded that there are basically 17 alternative
ways to support users in performing the 13 general tasks in Figure A-i. These 17 alternatives are
summarized in Figures A-2 through A-6.

The most difficult support to provide is for generating alternatives, and there are few
previous efforts to draw upon. This appears to be due, for the most part, to humans having great
difficulty in specifying the attributes of desirable alternatives. Some progress has been made in
using pattern recognition methods to infer attributes of desired alternatives from a set of
examples. It is fairly straightforward to retrieve examples if users can define them appropriately.
In general, as shown in Figure A-2, there are three basic ways to support generation of
alternatives.

Evaluation of alternatives is easy to understand in that this type of activity is common
within engineering analysis. The feasibility of supporting evaluation depends on the availability of
appropriate models and calculation methods for the alternatives and measures of interest. The
availability of models and methods can present difficulties when the phenomena of interest are
complex. Finite difference methods and geometric modeling techniques exemplify evaluative
supports for designers. Figure A-3 shows five approaches to supporting evaluation tasks which
encompass the range of alternatives that have been pursued in different domains.

The majority of previous efforts to develop support systems have focused on selection
among alternatives, in part because this type of support is most tractable. The two primary
approaches to support are shown in Figure A-4.

If all of the alternatives have been specified, and the probability distributions associated
with consequ, .!es of choosing each alternative are known, and the users' criteria can be assessed,
then it is usually qu. ite easy to determine the best or optimal alternative. For alternatives involving
multiple stages, locations, and so on, this optimization problem can become tricky, but is,
nonetheless, standard fare for control theory and operations research. This is not meant to
denigrate the important function of selection support systems, but it is frequently found that
identification of feasible alternatives and their likely consequences is sufficient for users to choose
immediately without resorting to optimization. Thus, despite the great attention selection among
alternatives has received, this task is usually not the most difficult task faced by users. Good
support for generation and evaluation is typically more valuable, but also seldom available.

102



While support of generation, evaluation and selection is central to designing aiding and
support systems, these types o?-support are not sufficient for a comprehensive approach to
human-centered design. It can also be necessary to support observation (Figure A-5) and
execution (Figure A-6).

1. For a given situation, a support system can retrieve previously relevant and useful alternatives.

2. For a given set of attributes, a support system can retrieve candidate alternatives with these
attributes.

3. Given user's assessment of suggested alternatives (e.g., via ranking or rating), a support system can
adapt its search strategy (e.g., via attribute weights or logical operations) to produce new
alternatives.

Figure A-2. Genneration of alternatives can be supported in three general ways.

4. For a given alternative, a support system can assess the alternative's a priori characteristics such as
relevance, information content and resource requirements.

5. For a given situation and alternative, a support system can assess the degree of correspondence
between situation and alternative.

6. For a given alternative, a support system can assess (e.g., via simulation) the likely future
consequences such as expected performance impact and resource requirements.

7. For given multiple alternatives, a support system can assess the relative merits of each alternative.

8. Given user's assessments of evaluation results (via requests for explanation), a support system can
adapt its evaluations in terms of time horizon, statistical measures, etc.

Figure A-3. Evaluation of alternatives can be supported in five general ways.

103,



9. For given criteria and set of evaluated alternatives, a support system can suggest (e.g., via
optimization) the selection hat yields the "best* allocation in terms of human-system resources.

10. Given the user's assessments of selection (e.g., via ranking or raiings), reflecting perhaps individual
differences and time-variations of criteria, preferences, and evaluations, a support system can adapt
(e.g., by modifying criteria weights) its processing to provide suggestions that respond to these
variations.

Figure A-4. Selection among alternatives can be supported in two general ways.

11. For given information, a support system can transform, format, aid code the information to enhance
human abilities and overcome human limitations.

12. For a given set of evaluated information, a support system can filter and/or highlight the information
to emphasize the most salient aspects of the information.

13. For a given sample of information, a support system can fit models to the information in order to
integrate and interpolate within the sample.

14. For given user and system constraints, as well as individual differences, a support system can adapt
transformations, models, etc. (e.g., modify what information is presented and how it is presented.)

Figure A-5. Monitoring can be supported in four general ways.

15. For a given plan and information regarding the user's actions, a support system can monitor plan
implementation for inconsistencies and errors of omission and commission.

16. For a given plan and information regarding the user's actions and intentions, a support system can
perform some or all of the plan to compensate for the user's inconsistencies, errors or lack of
resources.

17. Given information on intentions, resources available, priorities, etc., a support system can adapt its
monitoring and/or implementation to reflect, for example, a change in user goals.

Figure A-6. Plan execution can be supported in three general ways.

104



B. DETAILED SUPPORT REQUIREMENTS FOR INFORMATION ACCESS AND USE

This Appendix contains the complete list of 613 support functions. Each function is
expressed in terms of four elements:

0 Support verb Actions of the information system to support the designer.

* Designer verb Actions by the designer that are enhanced by the support system's
actions.

0 Primary object Object of the designer's actions (Figure 12)

* Modifying object Noun plus preposition that modifies a primary object.

Supports are organized according to support verb.

105'



APPENDIX C SUPPORT R TIRZJNTS

Execute procedure to
accessaC•C)

modeling tools/packages
models of func.
model's variables
drawing tools/packages
prototyping tool s/packages
experimental variables

construct C]
models of func.
drawings of form
prototypes

create
[]

input/output representations
models of func.
drawings of forms
prototypes/mockups
data collection planexplanations of
req. info for current design
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

evaluate
[]

input/output representations
models of func.
drawings of forms
prototypes/mockups

dev. from expct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

measure C)
performance

monitor
processing of

modeling tools/packagesdrawing tools/packages

prototyping tools/packages
obtain [I

req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawings of form
off the shelf prototypes
prototyping tools/packages

explanations of
funo. of past designs
forms of past designs

run
10

106



APPENDIX C SUPPORT REQUIREMENTS

models of func.
select

[1
input/output representations
models of func.
drawings of forms
prototypes/mockups

btw accpt/rejct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect.
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

Explain attributes for search for measures to
create

explanations of
req. info for current design

evaluate I]
input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
req. info for current design

"info on operational needs
req. info for past designs
func. of past designs
forms of past designs

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

Explain attributes for search for procedure to
create

[]
input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

evaluate
dev. from expct of

model's pred.
measured performance

Explain attributes for search to
identify

past designs with relevant req.
past designs with relevant func.

relevant I/O representations
past designs with relevant forms

availability of
explan. of func. of past designs
input/output representations
off the shelf models
modeling tools/packages
explan. of forms of past designs

107



APPENDIX C SUPPORT REQUIREMENTS

off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

Explain labels for search for procedure to
evaluate

C]
input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. Info for past designs
info on func. of past designs
info on forms of past designs

obtain

req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

select []
input/output representations
models of func.
drawings of forms
prototypes/mockups

btw accpt/rejct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. Info for current design
info on operational needs
req. info for past designs
info on func. of past designs
Info on forms of past designs

Explain labels for search to
identify

availability of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

locate

req. info for current design
info on operational needs

108



APPENDIY C SUPPORT REQUIREMENTS

req. Info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

Explain measures to
evaluate

[]
input/output representations
models of func.
drawings of forms
prototypes/mockupsexplanations of

req. info for current design
info on operational needs
req. info for past designs
func. of past designs
forms of past designs

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

Explain need to
create []

input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
req. info for current design
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from ekpect
forms of past designs
dev. of measured perf from expect

Explain procedure to
access

t]
modeling tools/packages
models of func.
model's variables
drawing tools/packages
prototyping tools/packages
experimental variables

construct [1
models of func.
drawings of form
prototypes

create

input/output representations
models of func.
drawings of forms
prototypes/mockups
data collection plan

explanations of
req. info for current design
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

evaluate
[0



APPENDIX C SUPPORT REQUIREMENTS

input/output representations
models of func.
drawings of forms
prototypes/mockups

dev. from expct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

measure fi
performance

monitor
processing of

modeling tools/packages
drawing tools/packages
prototyping tools/packages

obtain []
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawings of forms
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

run [1
models of func.

select (]
input/output representations
models of func.
drawings of forms
prototypes/mockups

btw accpt/reJct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

-------------------------------------------------------------------------
Explain search-by-attributes for measures to

create
explanations of

req. info for current design
evaluate

[1

110



APPENDIX C SUPPORT REQUIREMENTS

input/output representations
models of func.
drawings of forms
protLotypes/mockups

explanations of

req. info for current design
info on operational needs
req. info for past designs
func. of past designs
forms of past designs

sources of
req. info for current design
info on operational nee.s
req. info for past designs
info on func. of past designs
info on forms of past designs

. . . . . . . . . . ..--------------------------------------------------------------------
Explain search-by-attributes for procedure to

create
[1

input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

evaluate
dev. from expct of

model's pred.
measured performance

Explain search-by-attri.butes to
identify

[]
past designs with relevant req.past designs with relevant func.

relevant I/O representations
past designs with relevant forms

availability of
explan. of func. of past designs
input/output representations
off the shelf models
modeling tools/packages
explan. of forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

Explain search-by-label for procedure to
evaluate

[]
input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

obtain []
req. info for current design
info on operational needs
req. info for past designs

,1.11 i



APPENDIX C SUPPORT REQUIREMENTS

availability of
explan. of func. of past designs
input/output representations
off the shelf models
modeling tools/packages
explan. of forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

Search-by-label for procedure to
evaluate

input/output representations
models of func.
drawings of forms
prototypes/mockups

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

obtain

req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

select (]
input/output representations
models of func.
drawings of forms
prototypes/mockups

btw accpt/rejct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

Search-by-label to
identify

availability of
req. info for current design
info on operational needs
req. info for past designs

114



APPENDIX C SUPPORT. REQUIREMENTS

Info on func. of past designs

locate info on forms of past designs

[]
req. info for current design
info on operational needs

req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawing tools/packages
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

Transform, filter, highlight
[]

[1
model's variables
experimental variables

Tutor use of procedure to
access

[]
modeling tools/packages
models of func.
model's variables
drawing tools/packages
prototyping tools/packages
experimental variables

construct []

models of func.
drawings of form
prototypes

create [1
input/output representations
models of func.
drawings of forms
prototypes/mockups
data collection plan

explanations of
req. info for current design
info on operational needs
req. info for past designs
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

evaluate []
input/output representations
models of func.
drawings of forms
prototypes/mockups

dev. from expct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
info on forms of past designs

measure [l

: ~115.



APPENDIX C SUPPORT REQUIREMENTS

performance
monitor

processing of
modeling tools/packages
drawing tools/packages
prototypinq tools/packages

obtain []
req. info for current design
info on operational needs
req. info for past designs
info on func. of past designs
input/output representations
off the shelf models
modeling tools/packages
info on forms of past designs
off the shelf forms
drawings of forms
off the shelf prototypes
prototyping tools/packages

explanations of
func. of past designs
forms of past designs

run []
models of func.

select
H]

input/output representations
mo."els of func.
drawings of forms
prototypes/mockups

btw accpt/rejct of
model's pred.
measured performance

explanations of
req. info for current design
info on operational needs
req. info for past designs
perf. attributes and criteria
func. of past designs
dev. of model's pred. from expect
forms of past designs
dev. of measured perf from expect

sources of
req. info for current design
info on operational needs
req. info for past desigqs
info on func. of past designs
info on forms of past designs

U.S.G.P.O.:1US-686O.7/81031 116


